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The most precise way of estimating the dissipation of tidal energy in the oceans is by
evaluating the rate at which work is done by the tidal forces and this quantity is com-
pletely described by the fundamental harmonic in the ocean tide expansion that has
the same degree and order as the forcing function. The contribution of all other
harmonics to the work integral must vanish. These harmonics have been estimated for
the principal M, tide using several available numerical models and despite the often
significant difference in the detail of the models, in the treatment of the boundary con-
ditions and in the way dissipating forces are introduced, the results for the rate at
which energy is dissipated are in good agreement. Equivalent phase lags, representing
the global ocean-solid Earth response to the tidal forces and the rates of energy
dissipation have been computed for other tidal frequencies, including the atmospheric
tide, by using available tide models, age of tide observations and equilibrium theory.
Orbits of close Earth satellites are periodically perturbed by the combined solid Earth
and ocean tide and the delay of these perturbations compared with the tide potential
defines the same terms as enter into the tidal dissipation problem. They provide, there-
fore, an independent estimate of dissipation. The results agree with the tide calculations
and with the astronomical estimates. The satellite results are independent of dissipation
in the Moon and a comparison of astronomical, satellite and tidal estimates of dissipa-
tion permits a separation of energy sinks in the solid Earth, the Moon and in the
oceans. A precise separation is not yet possible since dissipation in the oceans dominates
the other two sinks: dissipation occurs almost exclusively in the oceans and neither the
solid Earth nor the Moon are important energy sinks. Lower limits to the @ of the solid
Earth can be estimated by comparing the satellite results with the ocean calculations
and by comparing the astronomical results with the latter. They result in @ > 120.

The lunar acceleration 7, the Earth’s tidal acceleration 6, and the total rate of
energy dissipation  estimated by the three methods give
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> d| j 1028 g—2 “cy=2t 10-22 52 10¥ergs—?!
E astronomical based estimate —~1.36 —28+3 —7.240.7 4.140.4
satellite based estimate —1.03 —24+5 —6.4+1.5 3.6+0.8
numerical tide model —1.49 —-30+3 —-7.5+0.8 4.5+0.5

The mean value for 6, corresponds to an increase in the length of day of 2.7 mscy—2.
The non-tidal acceleration of the Earth is (1.8 + 1.0) 10-225~2, resulting in a decrease
in the length of day of 0.7 + 0.4 ms cy~* and is barely significant. This quantity remains
the most unsatisfactory of the accelerations.

The nature of the dissipating mechanism remains unclear but whatever it is it
must also control the phase of the second degree harmonic in the ocean expansion. It is
this harmonic that permits the transfer of angular momentum from the Earth to the
Moon but the energy dissipation occurs at frequencies at the other end of the tide’s
spatial spectrum. The efficacity of the break-up of the second degree term into the
higher modes governs the amount of energy that is eventually dissipated. It appears
that the break-up is controlled by global ocean characteristics such as the ocean—

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1 In this paper, cy is used as the symbol for century.


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /)

PHILOSOPHICAL
TRANSACTIONS
OF

A

Py
/A \
A N

Y,

9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TIDAL DISSIPATION IN THE OCEANS 547

continent geometry and sea floor topography. Friction in a few shallow seas does not
appear to be as important as previously thought: New estimates for dissipation in the
Bering Sea being almost an order of magnitude smaller than earlier estimates. If
bottom friction is important then it must be more uniformly distributed over the world’s
continental shelves. Likewise, if turbulence provides an important dissipation mechan-
ism it must be fairly uniformly distributed along, for example, coastlines or along
continental margins. Such a global distribution of the dissipation makes it improbable
that there has been a change in the rate of dissipation during the last few millennium
as there is no evidence of changes in ocean volume, or ocean geometry or sea level be-
yond a few metres. It also suggests that the time scale problem can be resolved if
Ppast ocean—continent geometries led to a less efficient breakdown of the second degree
harmonic into higher degree harmonics.

1. INTRODUCGTION

Tidal dissipation and its consequences on the lunar orbit and Earth rotation has become a classic
problem yet there is probably no other subject in geophysics that has had as long a history of
frustration and still attracts very considerable attention from geophysicists, astronomers and
oceanographers. That this is so is as much a reflection of a fascinating subject as an indication
of a problem of some importance in understanding the origin and dynamical evolution of the
Moon. In his Harold Jeffreys lecture entitled ‘Once again - tidal friction’, Walter Munk intro-
duced the subject by saying that in 1920 it appeared Jeffreys had solved the problem of tidal
dissipation but that we have gone backwards ever since (Munk 1968). Now, some ten years
later, we can say that we have gone full circle, for once again there is agreement between
observations and theory of the secular acceleration of the Moon and the estimates of the dissipa-
tion of tidal energy in the oceans that cause this acceleration. Future new developments may
have as a consequence that we have to go through the cycle of agreement and disagreement once
again before we can finally conclude that the subject is closed. But if these results, such as those
that may come from lunar laser ranging analysis, disagree with our present knowledge we can
always use Jeffreys’s dictum ‘(The analysis) covers only a short interval of time and will probably
be improved’ (Jeffreys 1973).

Recent improvements in the question of tidal dissipation and lunar orbit evolution include:

(i) Revised estimates of the recent (since the seventeenth century) astronomical data of
observations of the Moon, Sun and Mercury, including improvements in the planetary
ephemeris.

(ii) Re-evaluation of the ancient astronomical records in particular the solar eclipse observa-
tions, the enlargement of the reliable data set and the extension of this data set further back into
time to about — 1400.

(iii) Improvements in the ocean tide models by numerical modelling.

(iv) Recognition that the dissipation in the oceans is fully described by second degree har-
monics in the ocean tide expansion, making the computation of dissipation by evaluating the
rate at which work is done on the ocean surface, the most precise and direct method.

A number of new developments may result in further improvements in the near future:

(i) The widespread use of seafloor tide gauges in strategic positions on the seafloor will lead
to further improvements in the ocean tide models.

(ii) Use of tidal parameters perturbing the orbits of close Earth satellites can be applied
directly to the lunar problem.

55-2
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548 K. LAMBECK

(iii) The lunar laser range data will provide a check, or improve upon, the astronomical
estimate of the present rate of the lunar acceleration.

The importance in studying the problem of tidal dissipation lies in its relevance to the study
of the origin of the Moon and perhaps, by extrapolation, to the evolution of other planetary
satellite systems. The problem of integrating the present lunar orbit into the past under the
influence of tidal dissipation is well known and goes back to G. H. Darwin in the late nineteenth
century. More recentstudies are by Gerstenkorn (1955, 1969), Slichter (1963), MacDonald (1964)
Kaula (1964) and Goldreich (1966). The consequences of this backward extrapolation are also
well known; if the present rate of dissipation is representative of the past, the Moon will have
been within the Roche limit of the Earth about 1.5 billion years ago. Neither the Earth’s nor the
Moon’s surface shows evidence for such a geologically recent catastrophic event that a lunar
sejour within the Roche limit is generally supposed to imply: the youngest rocks found on the
Moon have been crystallized at least 3 billion years ago, while stromatalites indicate that lunar
tides existed on the Earth 2.5 billion years ago and earlier. Recent discussions on the constraints
imposed by tidal dissipation on theories on the lunar origin are given by Kaula (1971) and
Kaula & Harris (1975).

The future evolution of the lunar orbit is perhaps of less immediate consequence for when the
length of day has become equal to the lunar month and the Moon has begun its long spiralling
motion back to the Earth, several billion years will have passed (Jeffreys 1929). But such an
evolution is of interest for other planets whose satellites may already have passed through this
stage as has been proposed by McCord (1968) and others in an attempt to explain the absence
of large satellites around Venus and Mercury.

Clearly in any extrapolation, either into the past or into the future, the manner in which the
tidal energy is dissipated is a crucial element in the theory. As Munk (1968) states ‘ Those who
have been heavily involved in calculating past orbits have a vested interest in dissipation by
bodily tides rather than ocean tides, for the solid Earth is less ephemeral than the ocean basins’
but all the evidence points to the fact that the oceans are a much more important energy sink.
The actual mechanics of the dissipation remains unclear nevertheless. If, as generally supposed
since the work of Taylor and Jeffreys, the dissipation is by friction in shallow seas, then any
extrapolation into the past becomes very uncertain indeed since we know that important changes
in the ocean configuration have occurred in the past. Lambeck’s (1975) recognition that the
amount of dissipation is contained in only some of the second degree harmonics of the ocean tide
points to a more uniform dissipating mechanism unless the shallow seas have an inordinate
influence on the phase of the global ocean tide. As discussed below this is unlikely and ocean
dissipation may not be as ephemeral as Munk suggests and the arguments indicate that the
extrapolation into the past may still be valid. In particular, the modelling of the tide as a lagged
ellipsoid remains a valid means of representing the ocean tide throughout the past history of
the oceans. Only the lag angle may have changed but possibly not by great amounts. Thus even
if the time scale of the orbital evolution cannot be established, extrapolation of the variations in
inclination or eccentricity of the orbit as a function of the semi-major axis remains valid. This has
not always been recognized. Munk (1968), for example, argues that MacDonald’s (1964) results
must be revised if shallow seas were important in the past. Goldreich (1966) also argues that
possible intense local dissipation in the past may vitiate his results and Hipkin (1975) criticizes the
use of the lagged tidal bulge as representing the ocean tide in studies of the tidal perturbations
in satellite motions, Gold & Soter (1969), in the similar problem of the Venusian spin-orbit
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TIDAL DISSIPATION IN THE OCEANS 549

coupling, recognized that no matter what the form of the tide, in this case the atmospheric tide,
only second degree terms contribute to the tidal torques. MacDonald (1964) and Gold (1975)
have also stressed the importance of these terms in the Earth—-Moon problem.

A second related study of some geophysical significance is the secular acceleration of the
Earth’s spin. The exchange of angular momentum between Earth and Moon results in a tidal
deceleration of the Earth that is actually greater than that observed over the last 3000 years:
Hence there is some mechanism that tends to accelerate the Earth. One proposal (Dicke 1966) is
that a secular change in the gravitational constant is responsible for this part of the observed
acceleration. A second proposal (Dicke 1966; O’Connell 1971) is that this acceleration is a conse-
quence of the isostatic post glacial rebound, and a third proposal (Yukutake 1972) is that it is
caused by electromagnetic core-mantle coupling. Other proposals invoke a growth of the core or
variations in the depth of the principal mantle transition zones. Clearly a precise determination
of the acceleration of the Earth’s spin may provideimportant constraintson cosmological theories
and geophysical models. Evidence for the non-tidal acceleration however, remains weak due
to it being the relatively small difference between two larger quantities that are both known to
within about 10 9%, only. Muller (1976) concludes in fact that the present astronomical evidence
does not support the existence of such an acceleration.

2. THE PROBLEM

The effect of the Earth’s tidal bulge on the lunar motion and on the Earth’s tidal acceleration
is well known and discussed generally in most geophysics textbooks (for example, Jeffreys 1962;
Kaula 1968; Stacey 1969). A more detailed treatment of the problem is required here.

The potential U of the gravitational attraction at r due to a mass m¢ at r¢ is

U= Gm1]|r—1| = (r¢ rlrd)]

where G is the gravitational constant. If the geocentric angle between the positions ¢ and r is
denoted by S, or S = arccos (r¢- r/r¢r), then apart from a constant the potential U can be
expressed in terms of a series of Legendre polynomials as

© !
g=gnes (1) By(cos ). (1a)
T¢ 1=2\"¢

Thus the tidal potential outside of the Earth Uj(r) of the Moon’s (or Sun’s) gravitational attrac-
tion on the Earth is a harmonic function of degree / and can be written in the form

U(r) = (e, ),
where Wj(e, A) is a surface harmonic. At the Earth’s surface r = R
U(R) = (R[r) Uy(r),
and the additional potential AUj(R) due to the Earth’s deformation is, by definition of the Love
numbers £;, £, Uj(R). Outside the Earth
AU(r) = k(R[r)*1 U(R)

= k(R[r)*+ G(r). (14)
Equation (1) describes the potential of the tidal deformation if the Earth’s response is elastic.
But the actual behaviour is anelastic and the response to the tidal potential Uj(r) is delayed by
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550 K. LAMBECK

an amount A¢. Thus the maximum deformation is reached at a time At after the Sun or Moon has
passed through the observer’s meridian. During this interval the Earth has rotated through an
angle At while the Moon has moved through a smaller angle nAt. 6 is the siderial rotation of the
Earth and n¢ is the mean motion of the Moon. Viewed from space, the tidal bulge is ahead
of the Moon by approximately an angle & = (0 —n) At. This delay or lag can be most con-
veniently described by the difference in position between a fictitious position #; immediately
overhead the bulge, and the actual position of the Moon r at the same instant. The gravitational
attraction of the Moon on this displaced bulge will exert a torque on the Earth whose value,
integrated over the volume vy of the Earth

f px Agrad U dvyg
%]

and averaged over one cycle of the lunar motion, will not vanish. In consequence the Earth’s
spin decreases. The equal but opposite torque of the bulge on the Moon,

f p¥ Agrad AU, dy,
%

adds to the latter’s orbital momentum an amount equal to that lost by the Earth and pushes
the Moon away from the Earth in an ever increasing orbit until eventually other stabilizing
factors come into play. The related quantities of interest that can be either observed or com-
puted are (i) the rate of increase of the dimension of the lunar orbit or the secular acceleration of
the Moon in longitude, (ii) the tidal acceleration of the Earth’s spin, (iii) the amount of momen-
tum and energy transferred from the Earth’s spin to the lunar orbital motion and (iv) the amount
of energy that must be dissipated in the Earth-Moon system.

Once the above torques are evaluated, the changes in the rotation of the Earth follow from
Euler’s equations. A more convenient method to estimate the accelerations is to evaluate directly
the total angular momentum in the system; that associated with the orbital motion of the Earth
and Moon about their centre of mass is given by

M .
Ty M )i,

Hy =M g Mme
¢ M+m¢r«f¢ M +my

where f is the true anomaly of the lunar motion. The component parallel to the rotation axis
is H cos?¢. The angular momentum of the Earth’s spin 6 is

H = C0,
and that of the Moon’s spin is Cf. The latter is negligibly small since
C((/C m([R //‘4}22 < 10-8
and 06 ~ .

If C, M and m( do not vary with time and if there is no variation in the gravitational constant G,
the conservation of angular momentum in the Earth~-Moon system
Hcosi¢+CO = constant (2a)

1 Mm«
CM+m ds

1 Mm ; dig
=il m L n«a«{%cosz([——-l—eqcosz«e«"‘smzad} (20)

requires that [a2ng(1—e2)tcosi] +0p =

or Op
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In these expressions i represents the inclination of the lunar orbit on the equator averaged over
one period of the lunar ascending node on the ecliptic (Kaula 1964). These expressions also
assume that there is no tidal effect on the ascending node but, as discussed below, a small tidal
rate does exist. The ; represents the Earth’s tidal acceleration due to the transfer of angular
momentum from the Earth’s spin to the lunar orbit. The 7, ¢, and di¢/d¢ follow from the substitu-
tion of the tidal potential into the Lagrangian equations of motion (see below). Because of the
Earth’s hydrostatic response to changing forces, its mass distribution and hence its polar moment
of inertia, C will be a function of the speed of rotation but this becomes important only when the
history of the Earth’s rotation is extrapolated back over geological time. The lunar torque L on
the Earth follows from L = Cly.

The solar gravitational field also raises a tide on the Earth’s surface and results in a further
torque that does not vanish over one cycle of motion. In this case the transfer of angular momen-
tum between the Earth and Sun is infinitesimally small, even when integrated over the age of the
solar system, so that the Earth’s orbit has undergone little tidal evolution. But the Sun’s torque
will accelerate the Earth’s spin by a significant amount and must be included in discussing the
spin history and energy dissipation questions. Thus a term FHgcosi, must be added to
equation (2a).

The rate at which tidal energy is dissipated in the Earth-Moon system can also be calculated
in several equivalent ways. These include (i) to compute the time average of the rate of work done
by the Moon on the Earth, (ii) to compute the rate of work done by the Earth on the Moon
and (iii) to compute the energy balance between the spin and orbital motions. This last method,
involving directly the quantities 6y and 7 does not require a knowledge of the energy sink and
follows directly from the astronomical data.

The rotational energy associated with the Earth’s spin is

E, = 3Co®
and the rate of change of rotational energy is
dE, = d(3C6%)/dt = Cliy,
where 0y is the total tidal acceleration of the Earth, thatis 6 +0r . The energy associated with

the orbital motion is
B = 12 meM __GMm(( _ _GMm«
2 2% «mq + M aq 24((

and includes the potential and kinetic energies. The change in this energy state is
dE,/dt = —km¢nqati,

and represents about n¢/0 or 4%, of the total spin energy. The energy transferred to the Earth
orbit follows from the solar equivalent to dE,/d¢ and is less than 1 %, of the spin energy transferred
to the lunar orbit, or less than 5 x 10~4 of the spin energy lost. The total amount of energy dissipa-

tion is
%%:%%—1+%§3= CO6 — ymnadig (3a)
= (5.860 — 9.581) 109 ergs1. (30)

The astronomically observed quantity is 7 from which the Earth’s tidal acceleration can be
partially estimated through the first term on the right hand side of equation (24). Smaller
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552 K.LAMBECK

contributions must be added to allow for (i) changes in the eccentricity and inclination of the
lunar orbit and (ii) solar tides. These additional terms cannot be observed directly and are
estimated from tidal energy dissipation calculations once the energy sink has been located
(Lambeck 1975).

There are three approaches to estimating the above mentioned quantities which relate to the
secular accelerations in the Earth’s spin and in the lunar motion. The first is from the analysis of
astronomical observations of the Moon’s motion with respect to the Earth. These observations
include the ancient eclipses as first recognized by Edmund Halley in 1695, occultation and
meridian circle observations of the Moon and Sun from about 1600 onwards (Spencer-Jones
1939) and eventually lunar laser range observations (Williams 1977). The second method is to
evaluate the tidal energy dissipation in the world’s oceans as first attempted by Jeflreys (1920)
and Heiskanen (1921). This method has generally been considered to be much less precise than
the first approach, based upon the analysis of the astronomical data, but the most recent calcula-
tions by Lambeck (1975) indicate that this is no longer the case: The tidal dissipation calculations
are as precise as the present astronomical data. The third method is to apply the results for tidal
parameters estimated from close Earth satellite orbits directly to the lunar problem since the
same parameters that cause short period perturbations in the satellite orbits also describe the
secular evolution of the lunar orbit (Lambeck 1975; Lambeck & Cazenave 1977). This method
has several advantages; (i) no assumptions need to be made as to where dissipation occurs in the
Earth, (ii) it enables a separation of the amount of dissipation that occurs in the Earth from that
occurring in the Moon, should the latter be significant and (iii) it enables the accelerations to be
estimated separately for each tidal frequency of both lunar and solar tides. Results obtained
from the satellite analysis, although only preliminary, are in essential agreement with those
obtained by the other two methods.

3. THE ASTRONOMICAL EVIDENCE

Astronomers observe the transits of stars across an observatory’s meridian to establish a time
scale referred to as universal time and compare this with a time scale that is supposedly uniform.
Since 1955, this uniform time scale has been provided by atomic frequency standards and is
referred to as atomic time. Before this, a dynamical time scale was used that is based upon the
observed motions of the Sun, Moon and planets and satisfies the Newtonian equations of planetary
motions. This scale, referred to as ‘ephemeris time’ is considerably less precise than the atomic
time (Munk & MacDonald 1960) and perhaps also less uniform due to possible errors in the
planetary theory. Evidence in the astronomical record for the tidal accelerations span a time
interval of more than 3000 years and the discussion of the data is conveniently divided into three
parts; (i) the data referenced to atomic time from 1955 to the present, (ii) the pre-atomic time
telescope observations spanning an interval from about 1670 to 1955 and (iii) the ancient and
medieval, or pre-telescope, observations going back to the thirteenth century s.c.

The observed telescopic quantities are the systematic discrepancies between the observed and
computed longitudes of either the Moon, Sun or planets where the observed positions are
referenced to the universal time scale kept by the irregularly rotating Earth and the computed
positions are based on a gravitational theory that assumes a uniform time scale. These longitude
discrepancies, apart from observational and computational errors, can arise in consequence of
two phenomena; (i) irregular rotation of the Earth ¢/( T'), including a secular part and long period
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TIDAL DISSIPATION IN THE OCEANS 553

(several decades and longer) fluctuations, resulting in an apparent acceleration in longitude of
the observed bodies, and (ii) secular accelerations 7 of the observed body. If 7( T) is the amount
by which the Earth is slow compared to the uniform time scale, or

+(T) = —ff(é(T)/ﬁ') dTdT,
the Sun will have moved through an angle

Mg = —ng f (6(T)/6)dTdT (4)

or Ao = ag +boTi+ 360 T%+(T), (5)

where #(T) represents the irregular non-secular part of ( T). For observations of another planet,
Mercury for example, whose mean motion is ny, we would expect an apparent longitude dis-

crepancy of AXy = (nyfne) (a0 +be T+ keo T?) + (ny/no) A(T), (6)

if only 6(T) is responsible. Within the observational errors this is what is observed (Spencer-
Jones 1939). Thus neither the Sun nor Mercury appears to undergo measurable non-gravitational
accelerations in longitude. This is to be expected if these accelerations are of tidal origin for
(equation (27)) .
.. Mg agd
el = =2=-2 < 10-8,
In consequence of the tidal interaction between the Earth and Moon, the latter experiences a real
acceleration 7i¢ in longitude, resulting in a further longitude discrepancy of

ffrz«(T)deT=a'+b'T+—%c'T2 (1)

and added to that due to O(T) gives a total discrepancy of
A\ = J [=nd(T))6 +1(T)]dTdT (8)
= a¢+b¢+ 36 T + (ngfno) B(T) (9)

aq a' " ag
with [b«'] = [b] 42 lb@], (10)
12 n@
()([ c 0@

Observations of Ad¢ and AAg or AAy at different epochs permit the constants in equations (5)
and (9), as well as the function #(7) to be estimated, in principle at least. Some difficulties may
arise if the time span of the data analysed is comparable to the periods of the non-tidal rotational
fluctuations, preventing an adequate separation of the quadratic term and £(7’) to be made.
The usual approach (see, for example, Van der Waerden 1961) is to multiply (5) by n¢/ns and
to subtract it from (9). Then, with (10) and (7)

(AA(— (ngfno) Ade) = a'+b'T+§c'T?
= ffﬁ“(T)deT (11)
or n(T) =¢" (12)

56 Vol. 287. A.


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

Py
A \
‘A

/7

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

~

OF

A

9

OF

Downloaded from rsta.royalsocietypublishing.org
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From (8) follows O(T) = (On)) [ — AA(T) +7i(T)],
and with (9) and (12) O(T) = = (O/ng) (co + 1), (13)

which represents the fluctuations in the Earth’s acceleration. From (12) the lunar acceleration
follows directly from the constant in the quadratic term in (11) and its determination should
present little difficulty since £(7") has been eliminated. The secular changes in rotation follow
from the quadratic term in (5).

The telescope observations made since the seventeenth century, consist mainly of meridian
transits of the Moon or occultations of stars by the Moon and of transits of Mercury across the
Sun’s disk. Their analysis essentially follows the above method but with only some three hundred
years of data, it is problematical whether a true measure of the Earth’s secular acceleration can
be obtained. Observations of lunar occultations made since 1955, referenced to the atomic time
scale, provide a direct measure of the real acceleration of the Moon in longitude as described
by the quadratic expression (7) and (12).

Ancient chronicles provide valuable astronomical records of solar and lunar eclipses, of lunar
and planetary occultations and conjunctions and of the times of equinox passage of the Sun.
By using gravitational theories based on a uniform time scale, the times and positions at which
these phenomena should have been observed can be predicted, and any differences with the
observations provide a measure of the non-Newtonian accelerations (Munk & MacDonald 1960;
Jeffreys 1962). Of the various records the most valuable ones are the solar eclipse magnitudes
which give a relation between 7 and 6 of the type

A = 2 g — 0,
n—1ne

where AA is the difference between the observed and predicted longitudes of the eclipse.

The astronomical evidence for the accelerations in the Moon’s longitude and in the Earth’s
rotation was reviewed by Munk & MacDonald in 1960 and apart from the new length-of-day
data observed with respect to atomic time since 1955, any recent improvements in our knowledge
of the accelerations has come from a re-analysis of essentially the same data, both the telescope
data and the ancient chronicles. However, the various redeterminations have perhaps not greatly
clarified our knowledge of the accelerations; various estimates for 7 differ by a factor of three
and more. With this state of confusion it is tempting to abandon the subject altogether until new
data, from the lunar laser ranging program for example, become available, were it not for the
fact that there does appear to be a convergence of opinion on how the available evidence should
be interpreted and for the fact that laser ranging to the Moon will not give us the geophysically
interesting non-tidal accelerations of the Earth. Furthermore, because of the long time interval
covered by the eclipse records, any remaining periodic errors in the lunar theory will tend to
have a minimum effect on the estimates of the accelerations which would not be the case for the
very precise laser range observations collected over a much shorter time interval.

The lunar acceleration

The nominal value for the lunar acceleration 7 = —22.4" cy=2 is that attributed to Spencer-
Jones (1939) (see also Clemence 1948) and is based on telescope observations made since 1680 of
occultations of stars by the Moon, of longitudes of the Sun and transits of Mercury across the
Sun. Spencer-Jones’s results have been verified by K. P. Williams in 1940 and by Clemence in
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1943, although Morrison (1972) argues that the uncertainty in 7 may be about three times
larger than estimated by Spencer-Jones. Also according to Morrison (1973), Spencer-Jones’s
value is strongly dependent on the early seventeenth century Mercury transits and Van Flandern
(1975) uses this comment to discard this determination ‘because of the high probability of
systematic errors’. Morrison & Ward (1975) have reanalysed the Mercury observations for the
years 1677-1973 giving a series of equations similar to (6) but also including unknowns referring

TABLE 1. ASTRONOMICAL ESTIMATES OF THE LUNAR ACCELERATION IN LONGITUDE, 72
AND OF THE EARTH’S SECULAR ACGELERATION, 6

i corrected
authors #("cy™?) O("cy-2)® 6("cy™?)

Spencer-Jones (1939)® —~224+7® — —
Munk & MacDonald (1960) — — 98640 —
Morrison & Ward (1975) —26.0 +2® — —
—28.0 + 24, — J—
Van Flandern (1970) —52.0+ 16 — —_
Van Flandern (1975) —65.0 + 18® -— —
Morrison (1973) —42.0 + 63 —8301 —
Oesterwinter & Cohen (1972) —38.0+4 — —
Fotheringham® —~30.8 —1340 —
De Sitter® -37.7 —1670 —_
Dicke (1966) (—22.4)® — 860 —

Curott (1966) (—22.4)© 770 — 140000

Newton (1970) —42.0 47 —1200 — 1350
Newton (1972) ~79.0+16 — 2050 —
Stephenson (1972) —34.0+2 — —

Muller & Stephenson (1975) —37.5+5.0 —1390 —1390

Muller (1975)® (1) —34.5+3.0 —1120 + 60 —
(i) ~30.4+3.0 —_ —
(ii) —28.0+2.0 — —
Muller (1976)12 () —30.0+3.0 —1070+ 50 —
il —27.2+1.7 — —

)
(1) Quoted in Munk & MacDonald (1960).
(2) Standard deviation estimated by Morrison (1972).
(8) Mercury transits from 1677-1973.
(4) Mercury transits from 1789-1973.
(5) According to Muller (1975) this value should be reduced to —36”,
(6) Adopted value of Spencer-Jones.
(7) Mean of values determined for epochs —200 and + 1000.
(8) See text for explanation of these three values.
(9) Original values found by the various authors.
(10) Based on telescope observations analysed by Spencer-Jones (1939) and Brouwer (1952).
(11) As corrected by Muller & Stephenson (1975).
(12) See text for the explanation of the two values for 7.
(18) These values are highly correlated.

to corrections to some of the orbital elements of Mercury and the Sun. Combined with observa-
tions of the Moon, mainly occultations collected from several recent discussions, they find
i = — 26" cy~? in essential agreement with the Spencer-Jones determination, the difference
being due to the fact that Morrison & Ward have used additional data and that they have
modified the orbital elements. To investigate the influence of the earlier observations, they have
also derived a solution using the transit observations since 1789 only, yielding —28”cy~2 in
agreement with their value based on the longer time span: There is no good reason for discarding
the earlier observations.
56-2
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Van Flandern (19770) analysed occultations of stars by the Moon, the observed time of occulta-
tion being expressed with respect to atomic time. From 14 years of data, Van Flandern finds
—52"cy~? and, five years later, from nearly twenty years of data he finds —65"cy=? (Van
Flandern 1975). However, a comment by Muller (1975, page 12.3) indicates that Jeffreys is
probably correct in his dictum, quoted in the first paragraph of this paper, for apparently upon
correcting some of his data, Van Flandern has reduced his estimate to — 36” cy—2. Morrison
(1973) using essentially the same method with data from 1955 to 1972, finds — 42" cy—2. Oester-
winter & Cohen (1972) have analysed meridian circle observations of the Sun, Moon and planets
since 1913 in a general solution for orbital constants, the tidal accelerations and the Earth’s
irregular rotation, and find 7, = — 38" cy—2.

These recent values based on data covering short time intervals tend to be consistently larger
than the values based on nearly three hundred years of data and if real, this discrepancy is
suggestive of a long period error in the orbital theories used, rather than any real change in the
lunar acceleration, for reasons discussed below. Van Flandern (1975) attributes any difference
between estimates for 7 based on ephemeris time and on atomic time, to changes in the gravita-
tional constant G, but in view of the uncertainty of his estimate such a conclusion is premature.

Various analyses of the ancient eclipse records show a similar spread of values for 7.
Fotheringham’s classical solution as given by Munk & MacDonald (1960) is determined essen-
tially from three eclipses, Plutarch, the Eponym canon and Hipparchus, although he did consider
other records as well. As already indicated by Munk & MacDonald, the interpretation of the
first two of the records is quite uncertain and for the last, three alternate dates are possible (see
Muller 1975 for a recent discussion). De Sitter’s analysis, as quoted by Munk & MacDonald
covers similar data but with the addition of a Babylonian lunar eclipse. Dicke (1966) and Curott
(1966) adopt Spencer-Jones’ value for 7i¢ and use the eclipse observations to determine the
non-tidal acceleration of the Earth. Dicke’s solution rests heavily upon the eclipses of the Greek
and Roman classics while the importance of Curott’s study is his recognition of the valuable
source of astronomical data in the Chinese historical records, covering a time span of at least
2000 years. These Chinese records have been extensively examined by Stephenson (1972).

Newton (1970) found two values for 7, one centred at epoch —200 and the other centred at
epoch +1000, from a detailed discussion of ancient and medieval records. These values were
considerably larger than the ‘modern’ value of Spencer Jones and that which he found from
analysing artificial satellite orbits (Newton 1968) and he suggested that the lunar acceleration
may have changed considerably over the last 2500 years. In a second exhaustive study of the
medieval records (Newton 1972), he finds a value that is considerably larger than his previous
values and argues that an important change in the lunar acceleration occurred near the year
+700. Physically, in view of the dissipation mechanism, this is improbable (see §8) and Muller
& Stephenson (1975) argue that Newton’s results are strongly biased by his use of partial eclipses
(see also Muller 1975). Muller & Stephenson (1975) have re-analysed all available eclipse data
going back to the thirteenth century B.c. and from a careful examination of the reliability of the
records, they keep only those observations that are of total solar eclipses or that specifically deny
totality. As aresult they use a much smaller data set than does Newton but they argue convincingly
that in this way they avoid several biases that are present in Newton’s results. Muller (1973)
uses the same material as in his study with Stephenson and any differences result from modifica-
tions in the astronomical estimation process. In all these recent studies there has been an impor-
tant drift away from the Greek and Roman classical sources to more reliable historical records.
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Muller’s various values are summarized in table 1. His first value is obtained by assuming that
both the theory and the initial conditions used in the lunar theory are correct. In the second
solution he argues that if there is an error in the observed rate of the lunar node, used in the
ephemeris, this will have important consequences on the solution for 7. By using Martin &
Van Flandern’s (1970) correction Q¢ = (4.3 +0.4)” cy~2, found from their analysis of lunar
occultation data between 1780 and the present, the solution for |7 is reduced by about 5" cy~=2.
Muller states that this remains the single most important source of possible systematic error in
his solution. The third value is based on a number of different solutions which use, in addition
to his eclipse data, the following information: (i) Morrison & Ward’s (1975) result for 7¢; (ii) Van
Flandern’s revised result of his 1975 analysis for 7¢; (iii) Martin & Van Flandern’s (1970) value
for £¢; (iv) a relation expressing the secular changes in rotation as the sum of the total tidal
acceleration including the solar ocean and atmospheric tide contributions estimated by Lambeck
(1975), variations in the gravitational constant G and the non-tidal acceleration of the Earth;
(v) three alternative cosmologies. The solutions for these various subsets of data all give a lunar
acceleration of about — 28" cy~2.

More recently Muller (1976) has revised his solution for 7, the non-tidal § and the change in
gravitational constant, using a correction of £ = 4.39+ 0.15” cy~! deduced from an integration
of the solar system 250 years back into time, by himself, Newhall, Van Flandern and Williams.
Muller’s revised estimate based on solar eclipses only is —30.0” cy—! and based on the additional
data and a variable gravitational constant, is —27.2" cy~1.

Secular changes in the length of day

The telescopic data covers too short a time interval to give meaningful estimates of the secular
acceleration of the Earth although Morrison’s (1973) study covering the longest interval, from
1663 to 1972, determines a value for the change in the length of day of about 1.5 ms cy~1. Dicke’s
(1966) and Curott’s (1966) values are found by adopting the Spencer-Jones value for 7i.. Newton’s
(1970) average value for the epochs —200and + 1000 is adopted in table 1. Muller & Stevenson’s
(1975) and Muller’s (1975) values are also given. As stressed in these last two papers, the Earth’s
rotational acceleration, if constant, gives a parabolic function 7(7) according to equation (5)
divided through by 7. Then & follows from f¢/ne (equation 13). Newton (1970, 1972), Curott
(1966) and others have analysed 7(T') or equivalently Ay (7) by assuming that the linear part of
the relation (5) vanishes at epoch 1900 whereas Muller & Stephenson show that it actually
vanishes at about 1770. This oversight introduces significant errors in 6, and the last column of
table 1 gives the values as corrected by Muller & Stephenson. Muller’s best estimate for 6 is
—1120” cy~? giving an average change in the length of day of 2.0 ms cy~* over the last 3000 years.
Muller’s (1976) revised estimate is —1070" cy=2.

Summary
We adopt the following values for the accelerations
fig = — (28" + 3)"cy2 = — (1.5 4 0.15) 10~23rad 52,
6 = — (1120 + 120)"cy—2 = (—5.40 + 0.5) 10-22rads~2.

The lunar acceleration is essentially the mean of the recent results obtained from the telescope
observations and from the eclipse records. As discussed in §8, it is improbable that 7 has varied
significantly over the last three or four millennia so that these two data sources should provide
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comparable estimates. Better estimates of 7 may result from (i) an improved lunar ephemeris,
based in part on improved constants of integration and perhaps on an improved theory for some
of the long period perturbations, (ii) additional eclipse records going further back into time
than the currently available data and (iii) precise laser range observations. The above value
for the Earth’s secular acceleration is that obtained by Muller (1975).
For completeness we also give:
(i) the tidal acceleration of the Earth, 6 which follows from equation (25),

Op = —17.22 x 102252,

(ii) the non-tidal acceleration of the Earth, fyp = 1.8 x 102252,

(iii) the rate of tidal energy dissipation; d£/df = 4.1 x 19¥ erg s—2.

These three estimates are based on the astronomical observations, with corrections added to
allow for secular changes in inclination and eccentricity, and for the solar tides (§8).

4, TIDAL POTENTIALS
The solid tide

Kaula’s (1964) development of the tidal potential as a function of orbital elements is used. The
potential at r due to the tide raised by the Moon follows from (14) with (1a), that is,

Gme = (R\ (R\
AU(r)=—%‘l§2k,(—r;) (7) By(cos S), (14a)

where the geocentric angle S can be expressed in terms of spherical coordinates 7, ¢, A of r and
7¢ P, A¢ of the Moon at r( by

cos.§' = sin @sin ¢+ cos ¢ cos g cos (A —A¢). (145)
Then (14a) becomes (see also Kaula 1968)
Gmg &, (R\'(R\H! ! [—m)! . .
a00) = Z4 S h(F) (5) 5, 0t (T Bnlsing) Bulsing cosm(A-2), (19)

where 8,,, = 1 for m = 0, otherwise 8,,, = 0. The lunar position 7¢, ¢, A¢ at an instant 7" can be
expressed as a function of orbital elements. Ifinstantaneous Keplerian elements ; (¢ = 1,2, ..., 6)
referred to an equatorial reference frame, are used, where

’

Ky, = G¢ = semi-major axis,
Ky = €¢ = eccentricity,
kg = ¢ = inclination of the lunar orbit on the equatorial plane,
k4 = M{ = mean anomaly and M = n where n is the mean motion,
ks = w¢ = argument of perigee,
kg = £2¢ = longitude of the ascending node,

then the appropriate transformation from spherical to orbital elements follows as (see Kaula 1966)

1 (R\! . . 1 /R\! ! . o J0fpg J1-meven
‘(7) B, (sin @)eimt = - (E) Y Fup(t) Gip,(e) [ ot ]
»=0 )

r
with vfupe = (I—2p) o+ (I —2p+q) M{+m(2(—0). The F,, (i) and G,(e) are polynomials
in sin? and e respectively. The latter are proportional to ¢4 so that the summation over ¢ need

(16)

o (
v,
= ]87 P {1 odd
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only be carried out over a small number of terms; that is, ¢ = 0, +1, +2. As the factor
(Rfr) = (&) for the Moon and very much smaller for the Sun, only terms with / = 2 will be
important at present although terms with / = 3 or 4 may have been important during a period
of close approach. The potential AU(r) becomes

_Gm R\H (R\! ({=m)!
o0 = w3 () G et

COS] I—-m even

i ) 5 Foy () 5 G0 | (=m0 (17)

SIN }i—m 0dd

For the anelastic response we are concerned with the potential at r, ¢, A raised by the Moon at
the fictitious position 7, g, A¢. This fictitious position can be transformed into fictitious Keplerian
elements & defined by & +£At, but in the short time interval A¢ that it takes for the Earth to
respond to the tidal attraction, the only element of the lunar orbit that will have changed by
a significant amount, is the mean anomaly M{ by n(A¢and the Earth will have rotated through an
angle OAt. To a lesser extent, w and 2 will have changed by small amounts due to the secular
rates of these elements; a(, ¢¢ and i¢ will not have undergone any perceptible change. Thus to
introduce the dissipation into equation (17) we need only substitute #¢ for »{, where

Fnpg = (1 —=2p) 0+ ({—=2p +q) M +m(2¢—0) + €ppg
with €impg = L({=2p) O+ (I—-2p+q) ng+m(Q¢— )] At = [(I—2p + q) ng—m0] At. (18)

If the position at which the potential is evaluated refers to a satellite at 7, ¢, A, it can also be
expressed in terms of Kepler elements q, ¢, 7, 0, £2, M’ with a transformation similar to (16). The
final form of the potential is

© l 1 © 1 ©
AU =% 2 X X X X AUupgy (19a)
1=2m=0p=0g=—0j=0g=— o
. R\!'(R\'""1Gm {—m)! .
with A[Jlmqug = kl ("Z-«) (;) _:l-«_« (2 80m) gl_}_mg!Flmp(z(()
X Fpynj (1) Gipg(eq) Gyg(e) cos (vtmpq ~Vimjg + Etmpy) (190)

and is equivalent in all respects to the form developed by Kaula (1964, 1969) and used by Gold-
reich (1966), Goldreich & Peale (1968), Peale (1973), Lambeck (1975) and others.

The tidal perturbations of the orbit of the satellite are found by substituting AU(r) into the
Lagrange planetary equations of motion (Kaula 1966). For satellite studies, of greatest interest
are the perturbations in inclination and in right ascension since these elements are generally
most precisely determined, although all elements «; are perturbed to varying degree. The result

for i due to Al is for example

mpgjg
d: Gm«[(l 2p) cosz—m] ( )’(1_2)”1 (2-4,,) ({—m)!
ST — na®(1—e®)tsin¢ aq\aq o] +m)!
X Emj(z) Emp (Z(I) Gljy(e) Glpq(e(() sin (Ug(mpq — Vtmjg +elmpq) . (20)

These and the corresponding perturbations in the other elements have periods longer than one
day only when /—2j + ¢ = 0, and for all other terms not satisfying this condition, the perturbations
will be of small amplitudes since their frequencies are high. The frequencies of the long period


http://rsta.royalsocietypublishing.org/

A

'\
\
JEN
L

fao
A Y

Y |
p &

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

y \

/7

N
N A
AL A

N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

560 K. LAMBECK

tidal terms are governed by both the lunar and satellite motions around the Earth and the
spectrum will differ quite considerably from that of the tidal variations observed at the Earth’s
surface in, for example, gravity. Also, as the amplitude of the orbital perturbations depends upon
frequency, tidal terms, observed at the Earth’s surface to be of small amplitude, may become
important in the satellite spectrum if the two basic motions become commensurable. Thus by
a careful selection of elements for an orbit, different fundamental tidal frequencies can be made
to have more or less important effects on the satellite.

In the study of the consequences of the delayed tidal response on the lunar orbit itself we are
concerned with the action of the potential (19) raised by the Moon at the fictitious position #( on
the actual Moon at r¢. This effect is found by substituting the potential into the Lagrangian
equations and then equating the elements of the satellite position with those of the Moon.
Furthermore, we are interested only in the secular perturbations, those with zero frequency, and
for which of,,,, — 9%y, = 0, or p = j and ¢ = g. Then for the three elements ag, ¢, 7, which relate
to the conservative quantities in the Earth—~Moon system, dropping the subscripts @,

dlmpq = 2K’lm[Emp (z)]z [Glpq(e>]2 (l - 2p + Q) Sin elmpqs

, 1—¢2)% . .
bimo = Ko 1By ()2 (G P [(1 = )} (1= 3 +.9) = (1= 2p) ] g
di _ w [([=2p)cosi—m] 19 -
and (5, = Kt ot s P11 GO0 i (210)
. _ Gmk, R\ ([—m)!
with Ko = Gt s ls) (i3 o)
Also, with %3 = G(M +my), gy = — oGy (215)

almpq

Long period tidal perturbations in the Moon’s motion will arise when
(=2p+q)-(I-2+g) =0,

for example for pgjg = 0( —1) 11, 1(—1) 21 etc. but the magnitudes of these perturbations are
several times smaller than the secular effects. Table 2 summarizes the principal secular contribu-
tions to 4, ¢ and di/dt for constant lag angle ¢,,,,. The principal contribution to d¢ comes from
the M, tide (Impg = 2200), for ¢ the N, tide (2201) and for di/d¢ three tides M,, O, (2100) and
K, (2110) contribute about equally, with the last two almost cancelling each other. The relative
importance of the perturbations with different frequencies, varies with the orbital elements and
therefore with time and in general the diurnal tides become proportionally more important the
further back into time the lunar motion is extrapolated.

In the actual integration of equations (21) it is usually more convenient to transform the
elements into ecliptic variables such as the Hill-Brown variables which vary more linearly with
time than do the equatorial elements, thereby facilitating the integrations. A complete analysis
of the tidal evolution problem requires also a development for the solar tide and this is obtained
from (19) by replacing all lunar parameters with their solar equivalents. The Sun—-Moon
interactions with each other and with the Earth’s oblateness should also be considered, as should
tides raised on the Moon by the Earth. The integrations are carried out by various assumptions
about thelag angle ¢,,,,. If the magnitude and frequency dependence of the phase lag is known,
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then the effects of tidal dissipation are modelled by assigning a phase lag to each component in
the tide expansion. Until recently it did not appear that the available tidal observations could
permit this, even for estimating the present rate of change in the lunar orbit, but as discussed
later, some progress in this area has been made. The usual procedure, following Darwin, has
been to set the phase lags ¢;,,,, equal for all frequencies. This would appear reasonable if the dis-
sipation of tidal energy occurs within the solid Earth. Several frequency-dependent mechanisms
appear to contribute to the dissipation of seismic waves within the mantle and for each, the
specific dissipation function varies with depth due to pressure, temperature and compositional
effects. The combined effect is apparently to produce a mantle with a broad frequency-
independent seismic absorption band which encompasses periods from a few seconds to an hour
or so. Whether or not this broad absorption peak also encompasses the tidal frequencies is
unknown at present and one of the objectives of the tidal studies is to investigate this possibility.
As demonstrated by Lambeck (1975), however, the major part of the dissipation occurs within
the world’s oceans and the phase angles now may be expected to be frequency-dependent. This is
discussed below.

TABLE 2. PERCENTAGE CONTRIBUTION TO THE TOTAL SECULAR CHANGES IN SEMI-MAJOR AXIS,
ECCENTRICITY AND INCLINATION FOR CONSTANT PHASE LAGS, €4

di
tide Impq a é dt
M, 2200 80.3 -17.5 81.2
N, 2201 4.5 91.0 3.0
L, 22011 — —-1.9 —
2N, 2202 — 3.2 —
K, 2210 — — 7.7
O, 2100 14.3 —_ -170.3
Q, 2101 0.8 16.2 —2.6
K, 2110 —_ — 79.3
Others — 0.1 -1.0 1.7

Integration of the equations of the Moon’s motion back into geological time were first carried
out by Darwin (1908). More recent solutions have been attempted by Gerstenkorn (1955), Slichter
(1963), MacDonald (1964), Sorokin (1965) and Goldreich (1966). These studies all agree in
that (i) there has been a minimum Earth-Moon distance in the past, (ii) the inclination of the
lunar orbit on the equator was substantially greater than it is now, and (iii) the eccentricity of
the lunar orbit decreases as the distance increases. Differences do occur between these solutions
and they have been discussed by Gerstenkorn (1967). The most complete integration of the
Moon’s motion is the work by Gerstenkorn (1955) and Goldreich (1966) although both have
assumed that the lunar orbit has remained circular throughout and that dissipation in the Moon
can be neglected. Gerstenkorn considers a phase lag that is proportional to frequency while
Goldreich’s results are for a constant ,,,, although he states that the evolution scenario is not
significantly modified by a frequency dependent lag. Gerstenkorn’s rationale for the linear phase
lag—frequency relation is his adoption of a Maxwell Earth model although, as shown later, this
also appears to approximate the dissipation in the oceans at the present time. Goldreich also
considers the case treated by MacDonald and Slichter for constant geometric phase angles
8 = (0 —n) At. The latter implies that the time lag varies with the position of the Moon in its
orbit and results in a complex dependence of the energy dissipation on frequency. This assump-
tion appears to be of little consequence in the present tidal evolution but its consequences may

57 Vol. 287. A.
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562 K. LAMBECK

have been important in the past if the Moon was ever close to the Earth (Gerstenkorn 1967). The
most detailed study of the lunar motion during such a close approach eventuality, is the work of
Gerstenkorn (1967). These theoretical developments of the dynamical orbital evolution can now
be considered to be in a satisfactory state and what is much more problematical is the lack of
a sound physical basis for extrapolating into the past: can we, from the presently inadequate
understanding of the dissipating mechanism, assume that conditions in the past, particularly
during the phase of close approach, have been constant? Gerstenkorn, Ruskol (1966) and others
believe that the tidal dissipation occurs in the solid Earth and Moon, making the extrapolation
into the past reasonably valid. But does this remain valid if| as discussed later, dissipation occurs
mainly in the oceans?

Other than this time scale problem, the most significant result of the studies by Gerstenkorn
and Goldreich is that the inclination of the lunar orbit on the equator must be non-zero when
the Moon was at 10 Earth radii and that the Moon could never have moved in an equatorial
orbit. This would appear to rule out theories in which the Moon is formed in the Earth’s equator
as is required by the fission and precipitation advocates of lunar origin (for example, Ringwood
1970; Binder 1974; Ringwood & Green 1974; O’Keefe 1974). Reviews by Kaula (1971) and Kaula
& Harris (1975) discuss these consequences.

The dissipation implied by the lag angle ¢,,,, can also be described in terms of the specific
dissipation Q~, or internal friction of the Earth through the relation

tan® = Q-1 = AE/2nE

where @ is the phase of the strain behind the stress, that is the angle ¢,,,, (equation (195)). AEis
the energy dissipated per cycle and Eis the peak energy stored. The astronomical estimate of 7 is
—28"cy~? (§3), and for constant €,,,, some 80 %, of this amount is due to the M, tide. With
equations (21) this leads to a phase lag of €559, ~ 5° and the tidal effective @ of the Earth is
about 12. With (18) the delay in the Earth’s response to the M, tide-raising potential is of the
order of 10min. Integrating the three equations (21) with a constant phase lag €,,,, = 5°,
results in the Moon being within 10 Earth radii of the Earth about 1.15 x 10° years ago. For
half this lag angle, this event would have occurred about 3.0 x 10° years ago.

Ocean tide potential

The above development is particularly relevant if the dissipation occurs in the solid Earth
when the tidal bulge is harmonic in the same degree and order as the tide-raising potential and
it has usually been supposed that severe local dissipation in the oceans may make this model
a very poor fit to reality. As shown by Lambeck (1975), thisis not the case and thisis also implied
by Kaula’s (1969) equations. The Love number £, and the phase lag ¢,,,, entering into the
potential (19) are tidal effective parameters in that they should reflect the total response of the
Earth and its fluid layers to the gravitational attraction. These parameters are therefore not
immediately comparable with other estimates of the Love numbers, either of observational or
theoretical origin. In particular, because the resonance frequencies of some oceans are near
the frequencies of some of the forcing functions (see for example, Platzman 1975), the tidal
effective k, and phase lag €,,,, must be considered frequency-dependent and this suggests that it
may be more appropriate to develop the ocean tide effect independently of the solid tide. This
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has been done by Lambeck, Cazenave and Balmino (1974) for the ocean tide perturbations in the
orbits of close satellites and applied to the lunar orbit by Lambeck (1975).

The ocean tide component, g, is given at any position on the Earth by an amplitude £3(¢, A)
and a phase yr4(p, A) that both vary with position. Thus (Hendershott & Munk 1970),

E4(ps A, T) = Ej(@, A) cos [2nf T— (@, A)]. (22)
The frequency of the tide f; is traditionally expressed as a function of ecliptic coordinates rather
than of the equatorial coordinates discussed earlier. A more uniform treatment would be to
derive all the tidal perturbations in the ecliptic reference frame, but as we are concerned here
only with the present rates of the tidal evolution and not with the integration of the equations
of motion back into time, this has not been done. The phase ¢, in (22) is expressed with respect
to the Greenwich meridian and the time 7'is the mean solar time.
To obtain a global representation of the ocean tide in spherical harmonics that is convenient
for an orbital theory, we expand £} cos ¥, and £fsin i, as follows:

8

Eycos iy = 2, T (ap, g cOSEA + b o sin Q) Py(sin ¢),

=1¢{=0
) (23a)
o s
Ehsingry, = X X (ap, st COSIA + b, 4 8in 2A) Py (sin ).
§=11=0
On the continents £} = 0. Then
£y = Z?%}Dﬁstcos [2nf,T + tA — e o] By, (sing), (235)
8
with D% s cos €5t = $(ap,5 F bpt)5 } (23¢)
D/:?h,stSineg:,s = %(aﬂ st £ bﬁ' st)

The summation of the form i] D cos (o + f—¢t) implies D+ cos (@ + B —et) + D~cos (x — f—€7).
_I.

The potential of this layer outside the Earth is

AU(r) = 4nGRp, 3 ;++’“1 ( ) Dj cos (2nf, T4 A —cho) Pulsing),  (24)

where the factor 1+£; allows for the Earth’s elastic yielding under the variable ocean load.
Expressing the coordinates 7, ¢, A in Keplerian elements «; using the transformation (16) gives
41tGR

[ee] s - )
o3 555 ¥
1 +k R .

x 925+ 1 (;t-) stu(l) Gsuv(e) [
with 7/)’:, stuy = 2chﬂ T— Gﬁj':, st T Vgpup-
The lunar (or solar) coordinates enter implicitly through the frequency f; and through the
amplitudes Dj 4. This expression for the ocean tide expansion can be substituted directly into
the Lagrangian equations of motion to determine the perturbations in the orbit of a close Earth
satellite whose motion is defined by the elements q, ¢, 7, w, 2, M. Thus analogously to the solid
tide perturbations (20), the ocean tide perturbation in inclination, for example, becomes

di _ 4nGRp, 1 +k; (R) 1
dtpowr @ 25+1 na®(1—e2)ksini

X D/:f%:,st stu(l) Gsuv(e) [(5— 214) COSi—t] [

Moa

AU, =

+
B8

b
"rj

COS] s—t even

+ sin 7,2:, stuvs (25)

s~t odd

¥ sin] s—t even

cos Y/:{stuv‘ (26)

57-2

s—t odd
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564 K. LAMBECK

Long period perturbations, longer than one day, occur only when y# 4, does not contain the
sidereal angle 0. As the argument 2nf, T can be written as m0 + 2rf; T' (table 3) where m = 2
for semi-diurnal tides, m = 1 for diurnal tides and m = 0 for zonal tides, diurnal and semi-diurnal
tides will not give rise to long period perturbations for that part of the potential (25) containing
Y3, stwrr Only those coefficients D} ., of the semi-diurnal tide (m = 2) and s,¢ = 2,2;4,2;6,2; ...
will give rise to long period terms. Other long period terms will be caused by the coeflicients
Df 4withm = 2 and s, = 3,2; 5,2; 7,2; ..., but now v = + 1 and the amplitudes of these terms
will be smaller than those of previous coefficients by a factor e. Thus unless the satellite orbit is
very eccentric, these perturbations will be quite small. Only coefficients Df o, with s,¢ = 2, 1;
4,1; 6,1; ..., of the diurnal tides (m = 1) will give rise to long period perturbations with v = 0.
We note that the amplitudes of the perturbations are proportional to (R/a)st! so that the coeffi-
cients with s > 4 will also tend to be small. Furthermore, we note that the perturbations due to
D} 5 or D 5, have the same dependence on the orbital elements as the perturbations due to the
solid tide of the same frequency f; and that the two cannot be separated. The Dj 4, occurs only
in the ocean tide potential. Because of its different inclination function Fy,(7), it can be separated
from theleading term in the ocean tide expansion, even though the two have the same frequency,
if at least two elements or two different orbits of close Earth satellites are available for analysis.

For the lunar orbit, the only terms in the potential (25) that are of importance are those with
s,t = [,m1i.e. those for which the degree and order in the tide expansion are equal to the degree
and order of the perturbing potential. The terms with s = 2/ which do give rise to secular pertur-
bations, have a negligible effect on the present orbit because of the (R/a()® term. Terms with
s = 3 are also negligibly small, of order ¢¢(R/a()® times smaller than those due to s = 2. It is
conceivable that at some stage in the past, these terms may have been more important. In analogy
with the expressions (21), the secular perturbations in 4, ¢ and ¢, dropping the subscripts, are

. , sin ]s—teven
ap, stuv = 2Kﬁ,stuv(*y" 2u -I-U) [COS_ ot odd eﬁ,sta
. , 1— 82)% sin ]s—t even
ipows = Ko o (1= ) 5= 2 — (o= 2001 [I0] ™ e, (27)
s—t odd
di _x [(s—2u) cos¢—¢] [sin]s-teven oF
dt|goruw 2 asini(1—e2)¥ [cos)y_poqq
. 8GM Fy (i) Gy(e) 1 +E, pyy (R\?
h ’ — stu SuY sfw|Z*- +
wit Kistw = RiGTM+my) alf 541 5 (a) Dj et

where p is the mean density of the Earth.

Existing developments and computer programs of the evolution of the lunar orbit usually use
the solid tide approach as discussed earlier and for this reason, it may be useful to determine
equivalent Love numbers and phase lags that include the ocean effects. This is readily possible
for the lunar orbit since the terms of degree s = 2/in the ocean expansion are of no consequence.
For close Earth satellite orbits this approach has little to offer. The equivalent phase lags are
obtained by equating the secular perturbations in a given element due to the solid tide with those
due to the ocean tide for the same frequency. The result is

SMp,1+k 1 [a\"*'1
L1 ) o

Cmpe =05k 2+ 1\R

o ({+m)! 1 [sin]’—m even
(l=m)! (2= 8om) Ly (2) Gipy (e) Lcos

€ tm- (28a)
I—m odd
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Results for the principal tides are given in table 6 in the form

sin I-m even
€

+
- 5 - (286)

sin €impg = Ximpq D/g':lm [
I-m odd

This expression would suggest that the equivalent lag angle ¢,,,, will change as the orbit evolves,

but this is of course incorrect as the coefficients Dj}, ¢, themselves depend on the orbit. If we

develop the equilibrium tide ¥£ in an equatorial system we find, following Lambeck, Cazenave &

Balmino (1974) and Cazenave, Daillet & Lambeck (1977)

R —_
(1, 15T) = 5 e S () (2 800) (8 B (1) Gpaled) 555 5 Qi
— I—m even
< P s ) [0 () 05 (o) | D ()2

0S —sin\ [é—meven .
= Aﬂ Z Z Z E lezyu U lmj1 (Sln (P)[ ( ln) * bij ( COS):I [vlmpq_ (m i])’l]:
I—-m odd

where a;; and b,; are the coefficients in the cosine and sine terms in the spherical harmonic expan-
sion of the ocean function and the Qi,;;, are coefficients which are non-zero for / +u+1 even and
for max (m %, |/—i|) <u < {+i. Comparison with (23) indicates that the quantity that can
be expected to be constant during the orbit evolution, apart from physical changes in the sea
floor configuration and in the volume of the oceans, is

(Z)Hl D/—}; m [Sin]l—m even ot
R)  Fyup(i) Gipg(e) Le0s limoaa ™

The above analysis indicates that the important effect of the ocean tide on the lunar orbit is
given by one coefficient in the ocean expansion that is of the same degree / and order m as the
lunar gravitational potential irrespective of the actual form of the ocean tide. For close Earth
satellites this same coefficient gives rise to the dominant orbital perturbations but now, because of
the nearness of the satellite to the ocean surface, a second term of degree 2/ and order m in the
tide expansion may become important. In both cases the other terms in the ocean expansion
cause only periodic perturbations in the orbits with periods less than a day and are of no conse-
quence; in the case of the Moon they do not lead to a permanent transfer of angular momentum
from the Earth’s spin to the orbital motion. Thus contrary to what is sometimes thought (see,
for example, Goldreich & Peale 1968; Hipkin 1975), the simple time lagged ellipsoidal bulge is
an adequate representation of the ocean tide. For the same reason Goldreich’s (1966) criticism
is invalid when he argues that MacDonald’s (1964) and Kaula’s (1964) developments provide
a very poor fit to reality when severe local dissipation occurs: the development remains valid no
matter how localized the actual dissipation may be; the satellite or the Moon will always respond
to only the second degree harmonics in the tidal expansion. Severe localized dissipation will at
most modify the amplitude and lag of this bulge.

Moon tides

Tides will also be raised on the Moon by the Earth’s attraction, and the external potential
of this tide follows from equation (19) by interchanging Earth and Moon parameters. This gives
the potential per unit mass of the Earth and, in considering the changes in the orbital elements of
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566 K. LAMBECK

the Moon, will have to be multiplied by M/[m . Substitution of this potential into the Lagrange
equations results in the appropriate changes in the lunar orbit and complete expressions are
given by Kaula (1964). For a given /mpqg, the ratio of perturbationsin g, ¢, ¢ due to the Moon and
Earth tides is given by, with [ = 2,

Moon tide effect (A_J )2 (&)5 (k3510 €5,4) ¢
Earth tide effect ~ \m¢) \R) (kosinegn,,)’

For a homogeneous incompressible planet the Love number £, is given by (Jeffreys 1962)

3 19p
ihe 2/(1 +2pgR)’
where p is the mean rigidity of the body. For the Moon, £, &~ 0.02. Data from the Apollo seismic
network indicate a @, for shear waves for the upper 500 or 600 km of the Moon, higher than several
thousand, and below this depth a @ of about 300 with a central region @ of about 100 (Toks6z,

Dainty, Solomon & Anderson 1974). If we take a lower limit of @ ~ 150 then ¢,,,, < 1° as
compared with an observed tidal effective lag of about 5° for the Earth. Hence

Moon tide effect <

Earth tide effect ~ 0.10.

The Moon tide equivalent to M, on the Earth (Impg = 2200) is a permanent deformation and
does not contribute to the dissipation. Hence tides raised on the Moon do not contribute signi-
ficantly to changes in the semi-major axis of the lunar orbit. The contribution of Moon tides
to di¢/d¢is also relatively small but the contributions to the eccentricity of the lunar orbit may be
relatively important since the principal effects on eccentricity result from the ellipticity of the
lunar orbit or from the N, component.

Solar tides

Solar tides raised on the Earth will give imperceptible perturbations in the Earth’s orbital
motion and these can be estimated from the expressions for the Moon tide perturbations upon
substitution of the Sun for the Earth and the Earth for the Moon; that is by substituting solar
parameters for the lunar constants in (27) and multiplying by mq /M.

Apart from the ocean tide, the atmospheric tide must also be considered and the most im-
portant contribution comes from the solar S, tide. The perturbations in the Earth orbit follow
from expressions such as (27) in which the Dg;sin e refers to the equivalent atmospheric layer
(Lambeck et al. 1974). Already known to Kelvin (1890), this tide leads the Sun and tends to
accelerate the Earth (see also Holmberg 1952).

Notation

In most tidal literature the definition of the tide is not given, in particular the sign of the lag is
not specified and is as often positive as negative. This, in addition to conventions introduced by
tidalists and astronomers which are not the same as conventions in satellite orbit theories, lead
to complexities in the definition of the phase angle ¢, and have introduced errors and mis-
understanding in some of our earlier papers. The tide, as written in (22), uses as argument
certain angles that involve time and lunar and solar elements as well as constants. The time is
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taken as Universal time and the orbital elements referred to the ecliptic are the s, &, p, N, p’
defined as follows:

s(T") = mean longitude of the Moon (§ = 0.549°/mean solar hour),
h(T) = mean longitude of the Sun (4 = 0.046°/h),

p(T) = mean longitude of lunar perigee (p = 0.0046°/h),
N(T) = mean longitude of ascending node (N = —0.0022°/h),
p'(T) = mean longitude of perigee (" = 0.000002°/h),

with respect to 0h.00, 1 January 1900.1 Their initial values, rates and eventually quadratic and
cubic terms are given by Doodson (1921). The constants in the arguments intervene because
each harmonic component of the tide is written as a cosine of an argument and has positive
amplitude, as has been done by Doodson & Warburg (1941) and presupposed in equation (22).

TABLE 3. RELATION BETWEEN THE INDICES AND ARGUMENTS, Uj,,,, USED IN THE ORBITAL DEVELOP-
MENT AND THE ARGUMENTS, 2ntfy 7" USED IN THE OCEAN TIDE EXPANSION; 7y IS THE INTEGER
REQUIRED TO MODIFY THE PHASE, €/ , DEFINED BY (23¢)

origin
L = Lunar
tide Impq S = Solar 2nf T Vimpe +20f5 T 78
M, 2200 L 30°T+2h—2s — —_
S, 2200 S 30°T — —
N, 2201 L 30°T+2k—3s+p — —
K, 2210 L+S 30°T+ 2k — —
L, 220-1 L 30°T+2h—s—p+n +n 2
T, 2201 S 30°T—h+p — —
2N, 2202 L 30°T+2h—4s+2p — —
K, 2110 L+S 15°T+h+4n +in 1
O, 2100 L 15°T+h—25—in —in -1
P, 2100 S 15°T—h—4n —in -1
Q. 2101 L 15°T+h—3s—p—in —in -1

Table 3 gives the complete arguments for the principal constituents. These correspond to the
2nfy introduced in (22) and used in the potential development (25). For the lunar orbit we need
only those terms in the perturbation equations such as (26), that give constant arguments. This
requires that an equivalence be established between the tidal frequencies in the ecliptic reference
frame and the equatorial frame in which the equations of motion have been expressed. An
approximate equivalence is given by Lambeck, Cazenave & Balmino (1973) which is valid for
the principal terms in the potential. Each harmonic of frequency fj corresponds to a specific
combination of indices /mpg which define the v,,,, and table 3 summarizes these relations. Further-
more the transformation (16) implies that the sidereal angle is zero when the mean Sun passes
through the meridian of Greenwich but the definition of the Universal time intervening in
2nfy is with respect to midnight. Thus a constant mr must be introduced into the equivalence
between 2nf; and vy,,,,. The condition Y ., = 21f— by, = 0 (equation (25)) required for the
secular perturbations due to the ocean tides gives

+ — 1 +
Vo, stuo = ?nrﬂ —E€F, st +mmn,

t In astronomical discussions the time is usually defined with respect to 12 h.00, 31 Dec. 1899 or 12 h.00,
1 January 1900, Tidalists usually use the origin given here and used in table 3 (Bartels 1957).
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568 K.LAMBECK

where 7, is an integer and depends upon the harmonic considered (table 3). Then with the lag
angle ¢f ; defined by equation (23) the lag angle appearing in the equations for the secular
evolution of the orbit (27) should be replaced by

+ 1
G/j’ st '§1trﬂ — M.

This has been implicitly done in the subsequent discussions of the lag angles and in table 4 which
summarizes the values of the principal lag angles.

To conform closer to the usual description of ocean tides the definition (23) has been changed
from the earlier useage by Lambeck et al. (1974) and Lambeck (1975) and this results in different
values for the lag angles €} .. A misinterpretation of Hendershott’s (1972) definition of the M,
tide in these earlier papers has been corrected, but in all these cases the products D sin €5
which govern the accelerations and dissipation have remained unchanged. Some earlier con-
fusion about the definition of the diurnal tides has also been resolved in the present paper.

5. FLuiD TIDE MODELS
Ocean tides

From the preceding analysis we have seen that the discussion of tidal dissipation in the oceans
centres around the second degree harmonics in the ocean tide expansion (23); in particular on
that harmonic that has the same degree and order as the exciting potential. Gravitational
torques of the Moon on all the other harmonics in the ocean tide are either very small as for the
degree 4 terms or are rigorously zero. Evaluation of the dissipation in the oceans only requires
these few terms in the ocean tide and these can be estimated either from the analysis of
existing ocean tide models or from the periodic response of close Earth satellites to the ocean
tide.

Knowledge of the world’s ocean tides is rather sparse. Long records of tides exist for many
parts of the shoreline and are extremely valuable for predicting the tides locally but these tides
are most often influenced by the coastline geometry and by the shallow coastal sea floor where
frictional forces will significantly modify the tides from their open sea behaviour. Thus the
coastal tides that sometimes reach more than 5m, such as in the Bay of Fundy, are very local
effects and are not at all characteristic of the global ocean tides. The best observations on the
open ocean tides comes from island stations, particularly from those islands that rise up steeply
from the deep sea floor such as volcanic islands. All such island records show that the undisturbed
ocean tide does not in general exceed more than a metre. The limited availability of unperturbed
tidal stations means that the global tidal patterns cannot be established with reliability from
measurements alone and one has to resort to theory for estimating the global tides. The recent
development of bottom pressure gauges for measuring the tides in the open sea has led to
important improvements in the knowledge of regional ocean tides, as demonstrated by Munk,
Snodgrass & Wimbush (1970) and Filloux (1971) for tides off the Californian coast and
D. E. Cartwright and colleagues for the North Atlantic, but the information is still too sparse to
be useful for global models. Complementary reviews of ocean tides are given by Hendershott &
Munk (1970) and by Hendershott (1973).

This lack of adequate observational data means that the prediction of open ocean tides is
largely based on theory, on the solution of the Laplace tidal equations (see for example, Lamb
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1932; Platzman 1971). Complete solutions are complex and must include at least the following
factors:
(i) The land-sea distribution and the ocean depth.

(i) Energy dissipation, usually assumed to occur only in shallow seas and along coast lines.

(iii) The Earth being elastic is itself subjected to a solid tide which will work on the sea floor
and modify the ocean tide.

(iv) The ocean tide, representing a variable load will deform the Earth and further modify
the ocean tide.

(v) The computed tidal patterns must be in agreement with the observed tides for those
stations where the tides are observed free from local disturbing effects.

Further complications, as yet not evaluated, may arise from the generation and dissipation
of baroclinic tides.

Numerical solutions for the global M, tide have been published by Bogdanov & Magarik
(1967); Tiron, Sergeev & Michurin (1967), Pekeris & Accad (1969), Zahel (1970, 1976) and
Hendershott (1972). Pekeris & Accad and Zahel (1970) have both attempted to solve the Laplace
tide equations using only a knowledge of the ocean—continent distribution, bathymetry and the
tide generating force. Both consider the tide on a rigid Earth. Pekeris & Accad (1969) introduce
a frictional force that is proportional to the tidal velocity rather than to the more realistic square
of this velocity if dissipation is by bottom friction. This constraint and their definition of the
boundaries of the oceans as the 1000m isobath results in dissipation that is fairly uniformly
distributed along coast lines. The authors determine a global friction coefficient by adopting
a value that results in the best agreement between computed and observed tides. Zahel (1970,
1976) introduces a bottom friction force which is proportional to the square of the velocity and
also allows for dissipation by turbulent friction, using a constant eddy viscosity coefficient for
the world’s oceans. Zahel’s 1976 model differs from this earlier model in that (i) it considers the
solid tide, (ii) the computational grid size has been reduced from 4° to 1° and (iii) the eddy
viscosity coefficient has been reduced. In all these models, flow is not permitted across the coast-
lines since specific dissipation mechanisms have been introduced. Bogdanov & Magarik (1967)
and Hendershott (1972) solve the Laplace tidal equations by imposing specific tide values along
the coastlines. No frictional forces are introduced and currents are allowed to flow across the
boundaries. Thus dissipation is assumed to occur in the shallow seas although the actual mechan-
ism is not specified. Implicit in these studies is that the coastal observations are representative
of the nearby deep water tides. Tiron et al. (1967) have published models for M,, S,, K; and O,
but these models differ considerably from the others. This is possibly a consequence of their
treatment of the dissipation, in that they impose the condition that observed tides equal com-
puted tides where the former are reliably known, and that flow normal to the coastlines vanishes
in regions where the tide is unknown. We do not discuss these models further.

Only Hendershott (1972) and Zahel (1976) consider the interaction between the solid and
ocean tide although models such as that of Bogdanov & Magarik apparently give realistic results
due to their introduction of observed tides as constraints. Allowing for the Earth’s tidal deforma-
tion eflectively reduces the tidal potential AU, to (1+4k,—#A,) AU, and presumably the tidal
amplitudes will be reduced by the factor (1 + %, —#£,). But if dissipation is explicitly allowed for
in the models, through mechanisms that depend on the tidal velocities, the rate of dissipation
and hence the tidal amplitudes may be further modified. By an iterative procedure, Hendershott
evaluates the interaction of the ocean floor’s elastic yielding, under the variable tide load. His

58 Vol. 287. A.
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570 K.LAMBECK

resulting model is inconclusive but does indicate that this interaction may be at least as important
as the solid tide effect. Presumably, by imposing the boundary conditions, this effect is already
partly included in his and Bogdanov & Magarik’s models.

Hendershott (1973) compares the various solutions. Agreement is generally good in the North
Atlantic but elsewhere considerable discrepancies exist; in the Indian and Pacific oceans
differences in amplitude by a factor of two occur between the solution of Pekeris & Accad and
that of Hendershott, and we cannot consider the available models to be adequate as far as the

TABLE 4. ESTIMATES OF THE Djfsines; OR Dy cos€y; FOR DIFFERENT TIDE MODELS

D, Dj;sinef;

or (o Dj;sinef; or

D_?l or or D3 cosey;
tide cm eh Dy cosey (corrected)

1. M, Bogdanov & Magarik (1967) 4.33 126° 3.51 —

2. M, Pekeris & Accad (1969) 4.57 110 4.37 3.00

3. M, Zahel (1970) 4.90 105 4.73 3.300

4. M, Hendershott (1972) 3.61 105 3.48 —

5. M, Zahel (1976) 4.66 110 4.38 —

6. M, equilibrium tide 4.00 0 — —

7. M, satellite solution® 3.07 123 2.6@ —

8. M, satellite solution®+ 1 — — 3.0@ —_

9. S, Bogdanov & Magarik 1.87 140 1.20 1.42®
10. S, satellite solution® 1.7 125 1.4® —
11. S, satellite solution® 1.5 121 1.3 —
12, S, equilibrium tide 1.86 0 — —
13. S, atmospheric tide 0.34 292 —0.326) —
14. K; Dietrich (1944) 2.34 222 —1.74 —_—
15. K; Bogdanov & Magarik (1969) 1.65 250 —0.56 —
16. K, Zahel (1973) 6.64 221 ~5.01 3.510
17. K; equilibrium tide 2.34 180 — —
18. O, Dietrich (1944) 1.66 38 1.31 —_—
19. O; Bogdanov & Magarik (1969) 0.67 61 0.32 —_
20. O; equilibrium tide 1.66 0 — —

(1) Reduced by factor (1+k,—4,) to allow for yielding of Earth.
(2) Provisional results only (Daillet 1977).

(8) Corrected for atmospheric loading according to equation (30).
(4) Without correction for atmospheric tide.

(5) Without ocean response to atmospheric load.

detail is concerned. Available models for the other frequencies in the tidal potential must be
considered even less adequate or are non-existent. Bogdanov & Magarik also published a solution
for S, and in a later paper (Bogdanov & Magarik 1969) they give models for K, and O,. Zahel
(1973) gives a model for K,. Empirical charts for the phase of the global K, and O, tides are
given by Dietrich (1944). All of these models except those of Hendershott and Zahel have been
harmonically analysed for the coefficients D ., and ejf ;. At regular 10° x 10° grid intervals the
amplitudes £}(p,A) and phases /4(¢,A) have been read off and the functions £}cos ¢, and
g}sinyry expanded into spherical harmonics (equation 234). On the continents, £}(p,A) = 0.
The coefficients ag, by, ag, bs, have been evaluated up to degree and order 18. Hendershott gives
these coeflicients directly. For Zahel’s 1976 model his computed amplitudes and phases on
a 1° x 1° grid have been used directly. Asis evident from the equations (27) expressing the secular
rates in the Moon’s orbital elements, only the second degree harmonics in the ocean tide expan-
1 See also the recent models by Gordeev, Kagan & Polyakov (1977).
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TIDAL DISSIPATION IN THE OCEANS 571

sion enter into the discussion. Specifically we require Dgsineg; for the semidiurnal tides,
D cosej; for the diurnal tides and eventually Dgjsin ef; for the zonal tides. These coefficients
are required for the principal tidal frequencies observed in the total ocean tide.

For the M, tide we have several ocean models which have been discussed above. The relevant
coefficients in this study of tidal dissipation are summarized in table 4. The Pekeris & Accad
(1969) and Zahel (1970) coeflicients Dy; sin €35 tend to be larger than those for the other M,
solutions due, in part at least, to these models having been computed for a rigid Earth. The
‘corrected’ values in table 4 correspond to the tide coefficients on the rigid Earth reduced by the
factor 1+ £, — Ay, or by about 70 9,. The uncorrected amplitudes Dy, 5, range from about 4.3
to 4.9cm and the phase varies by about 20°. The agreement appears satisfactory despite the
differences in the manner in which the dissipation is treated. The only other tide for which
a comparison is possible is the K, tide for which we have the numerical models of Bogdanov &
Magarik and of Zahel and the empirical model of Dietrich. For the last, only the phase is available
but amplitudes are known along the coastlines. With these and the location of the amphidromic
systems, we have extrapolated for the tide amplitudes in the open ocean with the condition that
the Df 5, term has the same amplitude as the equilibrium tide term. This same process applied
to Dietrich’s model of the M, tide yields a satisfactory result. The comparison of these three K,
models reveals the unsatisfactory status of the global diurnal tide models. Zahel’s corrected
amplitude Dy o, is about three times greater than the other two values and may be a consequence
of his using a value for the effective eddy viscosity that is too large (Zahel, private communica-
tion). All diurnal tides summarized in table 4 indicate that |coses| < |sines| suggesting that
the diurnal tides are closer to their equilibrium values than the semi-diurnal tides.

The coefficients £D} ., for the equilibrium tide are obtained by comparing the expressions
(235) and (29). As we are concerned with only secular effects on the lunar orbit we have m = ¢.
We also require « = s and |m +j| = £. Thus for |m+j| = m,j = 0 and for |m—j| = 0,7 = 0 or 2m.
Also [ = 2 and 5 = 2. Then with & = {nr;+mn

cos OL] 2—m even

ED#,, cos BeF,, = A {2 Q02 0y [
,2m £, 2m 2mi02 “i0 |
ZJ’C A\3 SIN& ) o m odd

_ cos o —sin o\ ]2—moven
+ Qamitamz | Citem) —biom

sin o COS A/ 12—m odd
i) L . Al +
D g, 5in Pefi g, = Ay {Z Q3inioz Bio [
3 2—m odd

_ sin o cos ot |2—meven
+ szi(2m)2 Qi(2m) —b (2m) .

—cosa sina/ |o_moaa

sin o ]2—m even
—COS &

Atmospheric tide

In many discussions on the secular deceleration of the Earth’s rotation, the atmospheric tide
has played a réle that is well beyond its significance in the total tidal effect; neglected ocean tides
such as O,, K, and the virtually unknown N, are much more important (Lambeck 1975). This
apparent importance is undoubtedly related to the fact that the atmospheric tide leads the Sun
and hence gives a positive acceleration to the Earth in contrast to the ocean’s decelerating effect.
This has led to speculation about the possible réle it may have played in the past (Holmberg
1952) but at atmosphere similar to that of Venus, and thermally driven, is required if it is to
cancel the effects of the present ocean tides.

58-2
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572 K. LAMBECK

Chapman & Lindzen (1970) review the subject of atmospheric tides (see also Siebert 1961).
Of the numerous frequencies in the atmospheric tide, the only one of some importance is the
solar tide at the S, frequency. Unlike the ocean tides, its global distribution is reasonably well
known from ground level pressure records and, because it is less influenced by the ocean-
continent distribution, it is more uniformly distributed over the globe: in its harmonic expansion
proportionally more power is contained in the low degree than high degree harmonics, and the
ratio of the 2, 2 terms in the atmospheric and oceanic expansions will be larger than would be
expected from simply comparing the tidal amplitudes at any one station.

The gravitational potential of the atmosphere can be computed in the same way as the ocean
tide. Atmospheric pressure (@, A) at each point on the Earth’s surface is harmonically analysed
into its constituent frequency components p4(p,A). Each such component p, can be expressed
by a series analogous to the ocean tide expansion (13) and the surface load is p4/g. In computing
the potential outside the Earth due to the layer, the effective depth of the atmosphere is assumed
to be small compared with the earth’s radius. The elastic yielding of the Earth under this variable
load is allowed for by introducing the load deformation coefficients k;. More troublesome is the
question of how to allow for the ocean response to this load: does the ocean respond as an inverted
barometer or not? A study by Cartwright (1968) of the radiational tides around the British Isles
found an average ratio (radiational tide)/(gravitational tide) of 0.18 for S, and an average phase
difference between these tides of 130°. Zetler (1971), in a similar study, for stations along the
U.S. coast finds comparable results. This radiational tide appears to be largely excited by the
atmospheric tidal load on the ocean surface but the response is very different from that of an
inverted barometer: In some cases the radiational tide has an amplitude that is larger than the
predicted amplitude by a factor of 10 (see also Cartwright & Edden 1977). This may be partially
due to a direct effect of solar radiation on the sea surface or due to the offshore-onshore wind
cycle. The first effect would not load the crust, the second effect will modify only the coastal
tide, not the mid-ocean tides. If the ocean response is static, the correct treatment is to multiply
the surface load /g of the atmospheric tide by the continent function [1 — (g, A)] and expressing
the resulting product of two spherical harmonic expansions as a linear relation of spherical
harmonics in which each term of degree s is multiplied by the appropriate (1 +k;). In view of the
various uncertainties this treatment is probably unwarranted. Table 4 gives the relevant co-
efficient in the S, tide assuming that there is no ocean response. These are from a solution by
W. Kertz, B. Haurwitz and A. Cowley as published by Chapman & Lindzen (1970).

The S, ocean tide solution of Bogdanov & Magarik (1967) may include the ocean response to
the atmospheric tide since it has been constrained by tide observations along the coastlines and
presumably no correction for this has been made. A ‘corrected’ S, ocean tide coefficient then
would be Df;sinef = (D;ﬁ sin 6;2) observed ocean — %00 (D‘gi sin €3—2)atmosphere' (30‘1)

Age of the tide

It has been known for a long time that spring tides do not occur as zysygy but some time later
and that this delay is a consequence of different phase lags associated with the M, and S, tides
(see for example, Lamb 1932; Doodson & Warburg 1941). Consider the M, and S, tides defined
by (22). Their superposition can be expressed as

= Em, +Es, = £0cos (2nfyr, T—Yra, — 1)
with amplitude 80 = [(£3r,)% + (£2,)% + 2881, €3, cos v]E
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TIDAL DISSIPATION IN THE OCEANS 573
&3, sinv
and phase = arcmnm’
where v =2nfy, T—2nfs T— (Yy,— Vs,)-

The comparable amplitude for the superposition of the equilibrium M, and S, tides is

&% = {(Brm)? + (E4m) 2 + 2880,k £S,im COS Vi)t
with vg = 2nfy, T—2nfs, T.

The maximum equilibrium tide occurs when

2n(fr,—So) T = 2pm,
where p is an integer. The maximum observed tide occurs when

2n(for, —Ss,) T— (Y, — ¥s,) = 2pm

and is late by (Urm, — Vs,) 12n(for, — Ss,) -

This is the ‘age of the tide’, a term introduced by W. Whewell in 1833. It is typically of the
order of one day (Doodson & Warburg 1941) although it may vary regionally between + 5 days.
Garrett & Munk (1971) have estimated the age from 647 port records as 1.2 days. The age can
also be expressed in terms of the Dj ., and ¢} ; of the M, and S, tides by using the relations (234)
and (23c¢). The resulting expression is considerably simplified if the observed value does indeed
represent a global mean and can be associated with the 2, 2 terms in the tide expansion. Further-
more, for the available M, and S, models, the Dj 5, are small compared with D 5, and we obtain

+
'ﬁMz - '/’sz R eﬁz, 22 — €g,, 22+
Bogdanov & Magarik’s solutions for M, and S, give
g 2 28

+ + °
€120 — €dp 00 = — 14

corresponding to an age of about 0.6 days. The satellite results (see below) for M, and S, give
—3° or an age of about 0.2 days. The differences between the three estimates could indicate
(i) unsatisfactory models and satellite results, (ii) that the coastal values are not representative
of mid-ocean values or (iii) that the S, values are contaminated by radiational tides. In view of
the spread of the lag angles e obtained from the various models, the first interpretation is
reasonable. Also the M, satellite results remain unsatisfactory because of the poor separation of
the 2,2 and 4, 2 terms. To investigate the second possibility the spatial variation of the age of
the tide should be investigated more closely. Contamination of S, by the pressure and other
radiational tides is likely. The satellite results have been corrected for the former by assuming
no ocean response to the variable pressure whereas the port results would include an ocean
response.

Doodson & Warburg (1941) note that on the average N, and M, differ in phase by about 15°.
Garrett & Munk (1971) refer to a result by M. Wimbush that the average phase lag of the N, tide
with respect to M, is about one half of the lag of M, with respect to S,. That is €5, < ey, < €y,
and €g,: €y, : €, & 4:2:1. The variation of these angles with frequency is approximately linear
and given by

et ek
€F oo = €5 gp+ 2222 M2 (0nf opf ). 31a
5,20 = €31, 22 27‘fs2—2ﬂfmz( s — 2nfy,) (31a)

In earlier studies (Lambeck 1975; Lambeck & Cazenave 1977) it was assumed that the phase
angles for all semi-diurnal tides could be considered to be the same but the above result may be
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574 K. LAMBECK
a better approximation. Thus for other semi-diurnal tides we assume that the lag is given by
€4 92 and that ED+
pree Djf 5 = Dy Dj (315)

23

Dietrich (1944) tabulates the lag of the diurnal tide for some 100 coastal and island stations and
the average value is g, — o, ~ 2°. Bogdanov & Magarik’s solutions for these two tides
yield 9°. These younger ages, compared with the semi-diurnal age, are further evidence that the
global diurnal tides are further from resonance than the semi-diurnal tides.

6. SATELLITE RESULTS

The motions of close Earth satellites and of the Moon are both perturbed by the Earth and
ocean tides but with the difference that for close satellites the principal perturbations are periodic
while for the Moon the principal perturbations are secular. As the same coefficients in the tide
expansions are responsible for both types of orbital disturbances, the analysis of satellite orbits
provides parameters that can be directly applied to describe the secular tidal evolution of the
Moon’s motion (Lambeck 1975; Lambeck & Cazenave 1977). The immediate advantage of this
approach is that the total tidal deformation is taken into account — not only the separate solid and
fluid tides but also their interactions: the effect of the solid tide on the ocean tide, the yielding of
the Earth under the variable ocean load and the yielding of the solid Earth and ocean surfaces
under the variable atmospheric load. This advantage is particularly important while there is
not yet an adequate way of treating these interactions in the present numerical solutions of the
Laplace tide equations. Satellite results do not, however, provide any information on the nature
of the energy sink.

Cazenave, Daillet & Lambeck (1977) have given initial results for the M, and S, tide para-
meters Dy} sin €35 that enter into the lunar discussion. Their solution was based on variations in
the inclination of two satellites: 6709201, a satellite of the TRANET Doppler navigation network
and GEOS 1 (6508901). Since then, perturbations in the inclination and right ascension of the
three other satellites tracked by the TRANET network have been analysed by using the orbital
residuals provided by R.J. Anderle. Unfortunately the four Doppler satellites are in quite
similar orbits and do not permit a separation of the second and fourth degree harmonics in the
tide expansion (see Cazenave et al. 1977). Neither can the perturbations in right ascension be
used as there is a second equally important tidal component, due to the O, tide, at a nearby
frequency and the two cannot be separated from perturbation analyses alone. Because of the less
uniform distribution of observations, the GEOS 1 satellite does not contribute significantly
to the solution for the M, tide. Recently C. Goad and B. Douglas have provided us with elements
for the GEOS 3 satellite (Goad & Douglas 19776) and these lead to an improved solution in that
a separation of the second and fourth degree harmonics is now possible, although the correlation
between the two is still high, of the order 0.8 (Daillet 1977).

This solution (table 4) as well as earlier ones suggest that the coefficient D3 sin e is less than
the values obtained from the numerical models. This may be a consequence of the poor separation
of the two terms or it may be an indication that the elastic yielding of the Earth by the ocean tide,
a factor that has not been treated adequately in the numerical models now available, reduces
the tidal amplitudes.

Until better solutions are available, probably the most satisfactory solution is to combine the
satellite results with the numerical model results. This has been attempted by Cazenave et al.
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TIDAL DISSIPATION IN THE OCEANS 575

(1977). The observation equations describing the ocean models are (234) with (235); the
amplitudes and phases are given in a 10° x 10° grid. The variances of the amplitudes and phases
are taken as
h[{ED = 0}; 0p ~Bem (0, & 6°).

and we ignore any correlation between these two quantities as well as any correlation between
these values at nearby point. We are forced to make these simplifications for lack of further infor-
mation on the statistical behaviour of the numerical solutions. The £°cos ¢ and £°sin ¢ at any
one point are of course correlated. The satellite observation equations are given by expressions
such as (26). A combination between the satellite solution and the numerical model of Bogdanov
& Magarik (1967) gives Djsinesh ~ 3.0cm and is within the error bounds placed on the
coeflicients in table 4 for the ocean tide results.

For S, the satellite solution is more satisfactory in view of the good separation that is possible
between the degree 2 and 4 terms from the polar navigation satellites and GEOS 1, since the
perturbations due to this tide have a period that is very much longer than that caused by the
M, tide and very much longer than the sampling interval of the GEOS 1 orbit determinations.
Residual solar radiation pressure perturbations with the same frequency as the S, tide may still
contaminate the solution. More information from satellites in distinctly different orbits is
essential before we can conclude that these discrepancies are real, and at present there is no
reason for preferring the satellite results to the numerical model results. Additional satellite
orbits must be analysed to give results for the tidal components other than these two. Felsentreger,
Marsh & Agreen (1976) give linear relations between the degree 2 and 4 terms for the S,, K; and
P, tides but these are of no value in the lunar problem. In addition, their results for P, are
erroneous since they have neglected the equally important K, tide which perturbs the orbit of
GEOS 1 with a frequency that is very similar to that of the P, perturbation. Further analyses of
these and other orbits are in progress (Daillet 1977).

7. ENERGY DISSIPATION IN THE OCEANS
Dissipation equations

The energy equation relevant to the tidal oscillation is (see for example, Hendershott 1972)

4 (z+2,)+9,.(qune) = E L T
Z, and Z, are the densities of kinetic and potential energies per unit of ocean surface; the second
term on the left hand side represents the horizontal power flux associated with the horizontal
tidal currents u; £’ is the geocentric tide; D the depth of ocean; d//dt is the rate at which work
is done on the ocean and d£/d¢ is the rate at which energy is dissipated, either by bottom friction
or by some other unspecified mechanism. Integration of this equation over one tidal period F
and further integration over the entire ocean surface reduces the energy equation to

—(By = (Wyds, (32a)
ocean
. 1 (T=Te+P
with =3 f W di, (325)
T=1T,
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576 K. LAMBECK

since the coastlines are assumed to be impermeable. Thus the rate at which energy is dissipated
throughout the ocean is proportional to the rate at which work is done on it by the total tidal
force.

If, as is commonly believed, either for want of contradictory information or for reasons of
tradition, bottom friction in shallow seas is the dominant dissipating mechanism then

%? =u-F,

where F is the bottom stress vector and can be written as pa|u| u and a is the coefficient of friction.
Taylor (1919) adopts a = 0.002; Brettschneider (1967) proposes & = 0.003. Dissipation will
therefore be proportional to the cube of the tidal current velocity. In the open seas the solution
of the Laplace tidal equations give tidal velocities that are typically of the order of 1 cm s~ and
with o ~ 0.002, pou® ~ 0.002ergs~'cm? Integrating over the world’s oceans gives —dE/dt
~ 10 ergs—! compared with the required amount of about 4 x 10'® erg s—! if the astronomically
observed tidal accelerations are a consequence of dissipation in the oceans. This is the usual
argument to show that the dissipation is limited to very shallow seas where the observed tidal
currents are much larger than those in the open sea. Even the coastal shelfs, where the water
depth is of the order of 200 m, are usually thought to provide aninadequate energy sink (Jeffreys
1962; Munk 1968; but see Defant 1961, for a contrary view). Thus

To+P
8y T i
S'J Ty

where the integral is carried out over the shallow seas of area S’.

If this argument is accepted then the amount of energy that is dissipated can also be evaluated
from the energy balance across the entrances to the shallow seas: That is, the rate of energy flux
across the entrance during one cycle of the tide added to the rate of energy produced by the work
done on the sea by the Moon, must equal the energy dissipated in the enclosed body of water.
The energy flux across the boundary L includes the rate at which work is done by the water
entering across the boundary and the kinetic and potential energies carried along by the tidal
current although Jeffreys (1929) shows that only the rate at which work is done by the water is
important. That is

dE dw
—d—i>=gprfTDugdtdL+—cv. (344)

Furthermore, the areas of the shallow seas are quite small and the work done by the Moon and
Sun on them is considered to be small, as shown by Taylor’s calculation for the Irish sea where
he found a rate of change of energy flux of 6.4 x 10 erg s—! while the rate at which work was
done by the Moon on the Irish sea was only 0.4 x 10'7 erg s—. The rate at which energy must be
dissipated therefore reduces to

dE
- \Tﬂ> - gpwafTDugdtdL, (345)

where the integral is evaluated across the entrances to the shallow seas. From Zahel’s (1976) maps
of the global distributions of energy dissipation by bottom friction and of the rate at which work
is done on the ocean surface, it is not always evident that the rate of work done on the shallow
sea can be ignored; for several regions |dW/d¢| is considerably larger than d£/d¢ and d W/[d¢ may
be positive or negative.
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The integrals (32), (33) and (34) summarize the standard discussion of dissipation (see for
example, Munk & MacDonald 1960; Kaula 1968) and has changed very little over the last
fifty years. Application of all three methods has been beset by numerous difficulties. On reading
the original accounts of these attempts, one is immediately struck by the paucity of relevant
observations and by the hypotheses and extrapolations that have been made in order to arrive
at a global estimate and it is surprising that there is any agreement at all between the various
estimates.

TABLE 5. ESTIMATES OF RATE OF ENERGY DISSIPATION IN THE OCEANS
dE/dt dE[d¢ (corrected)

author method tide 10" erg s~ 10% erg st

Jeffreys (1920) bottom friction M, 1.1 —
Heiskanen (1921) bottom friction M, 1.90 —
Groves & Munk (1958)  torque M, 3.2 —
Miller (1966) energy flux M, 1.7 —

Pekeris & Accad (1969)  bottom friction M, 6.0 4.20®
Hendershott (1972) torque M, 3.0 —

Kuznetsov (1972) torque (Zahel model) M, 7.28 3.57®

(Pekeris & Accad model) M, 6.68 3.29®

Pariyskiy et al. (1972) (Bogdanov & Magarik model) M, 5.24 3.67@
Zahel (1976) bottom friction and turbulence M, 3.8 —
equation (40) Pekeris & Accad model M, 2.92® —_
this paper Zahel model (1970) M, 3.20w —
Hendershott model M, 3.70 _
Bogdanov & Magarik model M, 3.23 —
Zahel model (1976) M, 4.25 —

(1) Value given by Munk & MacDonald (1960).

(2) Reduced by a factor (1+k—£h), (see text).

(3) Reduced by a factor (1+4&—Fk) (see text).

(4) Based on the corrected Djisiney; terms in table 4.

The first method (32), the evaluation of the rate at which work is done by the Sun and Moon
on the ocean surface, requires that the global ocean tide is known everywhere and it is often
assumed that the present models are inadequate for this. The advantage of the method is that it
requires no assumption about the nature of the energy sink in the oceans and neither does it
depend upon a knowledge of the tidal currents. The method was first used by Heiskanen (1921)
and later by Groves & Munk (1958). The most recent attempts at directly evaluating the integral
(32) have been made by Pariyskiy, Kuznetsov & Kuznetsova (1972), Kuznetsov (1972) and
Hendershott (1972) although the form of the ocean tide (234) and its influence on the lunar orbit
(equations 27) suggest that this calculation can be considerably simplified (see below).

The bottom friction method (integral 33) was first used by Taylor (1919) in his discussion of
dissipation in the Irish sea and was extended to the world’s oceans by Jeffreys (1920) and by
Heiskanen (1921). Table 5 gives their global estimates for dE/dz. The value attributed to Heis-
kanen is that corrected by W. D. Lambert and is given by Munk & MacDonald (1960). Both
values are only of historical interest today. Miller (1966) has used the energy flux method
(integral 345) which also assumes that dissipation is restricted to shallow seas but the actual
mechanism need not be specified. As the energy flux is proportional to the first power of the tidal
current velocity, it is generally considered to be more precise than the bottom friction method
although it does require a knowledge of the tidal height across the entrances to the shallow seas,

59 Vol. 287. A.
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578 K. LAMBECK

and of the time of maximum current relative to the time of the maximum tide amplitude.
Miller ignores the dW/d¢t term in (34a).

Dissipation by mechanisms other than bottom friction have generally received only a qualita-
tive treatment (see the discussion in §8) and have not been explicitly introduced into the global
tidal models. An exception to this are the M, tide solutions by Zahel (19770, 1976), who introduces
dissipation by turbulence in addition to bottom friction. Tidal currents can inject energy into
horizontal eddies by several mechanisms: by lateral stresses set up along the coast or continental
shelves, by bottom topography or by adjacent tidal currents. This suggests that the dissipation
by turbulence may be most important along the continental margins. Turbulent motion and its
dissipative action is a complex mechanism and cannot be readily taken into account in the tidal
equations. Usually it is introduced qualitatively by introducing an effective viscosity or eddy
viscous force and this has proved useful in providing simple dissipative mechanisms in a number
of oceanic circulation problems. These eddy viscous forces are given by Zahel (1973, 1976) (see
also Kasahara & Washington 1967) who assumes that vertical turbulence can be neglected in
comparison to the lateral turbulence. The forces to be added to the Laplace tidal equations
together with other frictional forces, then are

Fy = pKy Viuy,
Fq, = pKhV2u‘p,

2
with the operator V2 = T;E {(—:Bi—(;)a—i—? (cos qoa—%) + Ebsizt—p 69/\_2}’
where u, and u, are the longitudinal and latitudinal components of the horizontal velocity and
K, is the lateral eddy viscosity coefficient. K, depends on the type and scale of the turbulent
motion as well as on the degree of stability and in any flow pattern will vary spatially and in time.
Estimates of Ky, vary over a wide range. Munk (1950) requires K, ~ 5 x 107 cm?s~' if the energy
acquired by the ocean circulation from the winds is dissipated by lateral viscosity, while values
up to 109cm?2s~! are required to account for features of the western boundary currents (Bowden
1962). For the Antarctic circumpolar current Hidaka & Tsuchiya (1953) estimate
K, ~ 10'°cm?s~1. Zahel (1970, 1973) adopts a constant value for the world’s oceans of
10" cm?s~! but reduces this to 5 x 10° in his most recent model in which he finds

B (dE

——) = 0.7x 10Y¥ergs™1,
d¢ bottom friction

and - ( = 3.0x 10¥ergs,

ds ) turbulent friction
This importance of turbulent friction may also be a consequence of his choice of boundary
conditions; the coastline is defined by the 50 m depth contour and the velocity perpendicular to
the coastline vanishes. Thus a major part of the shallow seas is excluded from his model. Gordeyev,
Kagan & Rivkind (1975) adopts K, & 107 cm?s~ and conclude that with this value dissipation
by turbulence is not important. Clearly more precise information on a representative value of
the eddy viscosity, applicable to tidal problems, is most desirable.
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TIDAL DISSIPATION IN THE OCEANS 579

Work method

The rate at which work is done on the ocean consists of two parts: (i) the rate at which body
forces work on the ocean,

P 55 (€ =8) +pV,.[u(E ~5+D) ],

and (ii) the rate at which the sea floor, moving due to the solid tide and the variable ocean load,

works on the ocean, or pa(£' =5+ D) dd/dt.

In these expressions £’ is the geocentric tide of sea surface and ¢ is the geocentric displacement of
the sea floor. With £ = £’ — 4, the tide with respect to the sea floor, the total rate at which work
is done is dW

= US4 pg(E+ D) P+ oV, [u(E+D) 1, (35)

where ¥ is the total tidal potential. Thus if the potential of the direct attraction by the tide raising
potential is U, (with [ = 2) and the potential of the ocean layer expanded according to (235)

Y= (1+ky) Uy + Zos(1 +£5) &

= (L) U+ 3 5 B aty(1+K) D08 [2fy T 1A — 6 ] Pu(sin ), (36)
where th o, = 4nGRp,, /(25 +1).
The total solid tide of the Earth will be
a:%U,“%ath (37)

From (315) and (35)
. d¢ dé
W = pu(H g ) 408 E+D)G ) +0uVe: [0(E+D) 1),
For elastic yielding (dé/d¢) = 0 and in the third term £ < D. Hence
. d dé
3 = po{ WS Y+ pug(ES) ) +0uV,e [uDPD,
and upon integration over the ocean surface the last term vanishes if the boundaries are im-

permeable. Then — d dé
@y = po | (55 yas+rug [ (€ yas
S di S ds

= puh +Pul (38)
With (36) the first integral becomes

L= +k2)fs<lf,m%§>ds+ocs(1+k;)fs<§sdgs>ds

whose second part vanishes when integrated over the sphere. Similarly with the definition (37)
of d, the second integral of (38) reduces to

I, = —f <gdU"n>dS

and (WY = po(L+ky) fS<U,m dt>dS+ phy f <gdU’m>dS

59-2
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580 K. LAMBECK

Thus apart from modifying the actual tide £, the Earth’s deformation by the tidal load does
not contribute to the mean rate at which work is done on the ocean layer and Hendershott’s
(1972) equivalent expression (52), restricted to the solid tide only, is valid in the more general
case as well; on an elastically yielding Earth, the dissipation is still defined by the coefficient
D#; sin ;. This means that (W) can be estimated from empirical tide models without requiring
any information on the manner in which the tide loads the Earth.

To reduce further these two integrals we write the potential as (from equation (1) with (145))

0S l—m even
U;m = (]lmqulm (Sln(p ( n) odd (vlmpq_m/\)

l-m

in which vy, ® n(375+m) — 2nf, T, and Uf,,, follows from (17) as

U = 2 (B) H2L1 (2= Bom) Fon 6 G (39)

Then with the tide defined by (23),

[, Uings 45 = — 20, U, D Mo (208 T~ i ),

Sil’l l—-m even
mde

COS/1—m odd

sin \i—m even
and ([, U8 ) = 20, U D i (o) """ Tt 4]
in \{—m even
Similarly < f gL dS> = 20f, Uy D N (S‘“) [eh (i +m)],
COS/1moda
—_— 1 I-m even
and Ty = 20yl + ks =15) U D i (o) ™ (i )]
COS/7-m odd
. _ 4nR2(]+m)!
In these expressions N, = BT (=m) (2=,
With (39),
= 4n6R>mep,, (R\'D}. 1 . sin | I-m even
(WY = 2nfy(1+ky—hy) y L W(;) 5 /’4_’ " Fyp (1) Gipg(e) (cos)l_m " lefmm(brs+m)]. (40)

The work method, integral (32), therefore requires only the second degree harmonics in the
ocean tide. More specifically, only the harmonics with the same degree and order as the potential
of the forcing function intervene in the mean rate at which energy is dissipated in the global
oceans; the rate at which work is done by the other harmonics being zero when averaged over
one period and over the world’s oceans. This simple result has apparently been overlooked in the
literature on tidal dissipation. Its consequence is that the rate of energy dissipation can be com-
puted with relatively good precision since the second degree terms of the various M, models are
in quite good agreement despite the variance in their detail.

‘Table 5 summarizes several estimates of dE/d¢ for the M, tide based on equations (40) and on
the coeflicients Dy sin e given in table 4. The mean value for the rate of dissipation of the M, tide
is (3.3 £0.3)10"ergs~%. For comparison, d£/df computed from some of these models by other
authors are also given. Hendershott (1972) integrates the work done on the ocean by the Moon
as well as by the elastic body tide. The latter reduces the dissipation rate from what it would be
for the same tide on a rigid Earth by a factor (1 +k,—4,) or by about 709, (equation 40). The
result by Pariyskiy et al. (1972) based on the model by Bogdanov & Magarik (1967), and by
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TIDAL DISSIPATION IN THE OCEANS 581

Kuznetsov (1972) based on the models by Pekeris & Accad (1969), and by Zahel (1970) must
likewise be reduced by this factor. Finally, as the Pekeris & Accad and Zahel (1970) models
correspond to tides on a solid Earth, an additional reduction of 70 %, is in order to allow for the
modification of the ocean tide by the elastic tide. The agreement between these results and those
obtained from equation (40) is now in general within 10 9%,.

The result (40) for the rate at which work is done on the ocean surface can also be estimated
directly from the energy balance in the Earth-Moon system. From equation (3«) with the tidal
acceleration given by (25) and the secular rates in the orbital elements given by (27), ignoring
terms in ¢? and with Mm/(M +m¢) & m¢, this method gives

dE - 4nGR2mp,, (1 + k) (g !
Ht-_[n(l—2p+q)+m6] p ST 1 a)
. sin l—m even
X Emp(l) Glpq(g) D/j’-, im [COS] e/%:,lm' (41)
I—-m odd

The frequency of the tidal wave is
—2nfyn (I=2p) &6+ (I—2p+q) n+m(0—Q),
but as @ and £ are both small compared with z or 6,
—2nfp~ (I-2p+q) n+mb.

The only difference between the expressions (40) and (41) now is the factor (1 +£,— A,) appear-
ing in the former and (1 +#£;) in the latter, but the two are numerically equal.t

TABLE 6. SUMMARY OF OCEAN TIDE PARAMETERS: X};,q IS THE FACTOR FROM EQUATION (28)
FOR ESTIMATING THE EQUIVALENT SOLID EARTH LAG ANGLES €y,

D sineg;
Dy or Dg& 22or * Xumpa
cm e or 6 D} cose cm-! €mpa
ocean model results
M, 3.64 112° 3.37+0.30 0.033 6.4
S, 1.66 134 1.1940.25 0.071 4.4®
N, 0.69 100 0.68 + 0.20 0.170 6.6
K, (Lunar) 0.32 136 0.22 +0.07 0.364 4.6
K, (Solar) 0.14 136 0.10+0.03 0.793 4.6
L, 0.10 —56 —0.08 +0.02 —1.189 5.5
2N, 0.09 88 0.09 +0.03 1.274 6.6
T, 0.10 133 0.07 +0.02 1.187 4.8
K, (Lunar) 1.37 236 —0.77+0.15 —0.041 1.8
K, (Solar) 0.63 236 —0.35+0.07 —0.087 1.8
O, 1.17 50 0.75+ 0.15 0.039 1.7
P, 0.54 55 0.31+0.10 0.084 1.5
Q, 0.22 47 0.15+0.05 0.201 1.7
atmospheric tides
S® —0.10 +0.05
S@ —0.32+0.10
satellite results
M, 2.6+ 0.6 4.9
S, 1.3+0.2 5.19

(1) To be used with the ocean model results.
(2) To be used with the satellite results.
(3) Equivalent phase angle for combined ocean and atmosphere.

+ Recently S. M. Molodensky has demonstrated the equivalence of these two factors.
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582 K. LAMBECK

8. COMPARISONS AND DISCUSSION
Summary of ocean tide parameters

Table 6 summarizes the ocean tide parameters required for estimating the tidal accelerations.

M,: The adopted values represent the mean of the four independent models 1-4 of table 4.
The amplitudes have been corrected for the tidal yielding when appropriate. The individual
values differ from the mean by less than 10 9%, and an uncertainty of this amount is adopted for
the Dy sin €3;. ‘

S,: The age of the semi-diurnal tide is taken as 0.9 days, the mean of the results obtained by
Garrett & Munk (1971) and from the Bogdanov & Magarik models. The age added to the phase
of the M, tide estimated above, determines the phase of the S, tide. The ratio Dy, 20/ D&, 20 from
the Bogdanov & Magarik models is 2.3, close to the equilibrium value of 2.1. For D, ,, the
mean value for the M, tide coefficient is scaled by the mean of these two ratios. An uncertainty
of 20 9, is assumed.

Atmospheric S,: Both the age of the tide and the S, model will be contaminated by the atmo-
spheric loading and a residual atmospheric tide over the continents of

(1 - aoo) (D 2_2 sin 622) total atmosphere

must be taken into account. This contribution is small compared with the uncertainties in the
principal ocean tide coefficients.

Other semi-diurnal tides: Amplitudes and lags of the other tides are computed according to
equations (31), using the mean M, amplitude and a phase lag between S, and M, of 22° corre-
sponding to the above mean age of the semi-diurnal tide. Uncertainties for these tidal parameters
are assumed to be 30 9.

Diurnal tides: The means of the Dietrich and Bogdanov & Magarik solutions are adopted for
both the K, and O, tides with uncertainties of 20 9,. The amplitude ratio of the adopted values
is 1.7 compared with 1.4 for the equilibrium ratio. The phase difference is close to the value
estimated directly from Dietrich’s observed diurnal ages. The lunar and solar parts of K, are
separated according to their equilibrium ratio. For the other diurnal tides of marginal importance
we use equations (31) after substituting K, and O, for S, and M,. Uncertainties of 309, are
assumed. In Lambeck’s (1975) analysis the K, and O, values were estimated from Dietrich’s
solution with extrapolated amplitudes that lead to amplitudes for Dy that are considerably
larger than the equilibrium values.

Satellite results: For convenience the satellite results for the M, and S, tides are repeated in
table 6. The latter includes the combined effect of the ocean and atmospheric tides. The M, tide
solution is accurate to 20 %,, S, to about 10 9%,.

Lunar acceleration

From the equations (27) and the ocean tide parameters summarized in table 6 the secular
changes in the Moon’s orbital elements (da/dt, de/d¢, di/d¢ and 7) can be evaluated (table 7).
Of these elements, the latter can be directly compared with the astronomical estimate for the
Moon’s acceleration in longitude. The principal contribution to 7 comes from the M, tide with
smaller contributions coming from N, and O,;. The use of all relevant tidal frequencies gives
a total acceleration in longitude of (—30.6 + 3.1)”cy—2. The satellite estimate of the M, tide
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TIDAL DISSIPATION IN THE OCEANS 583

parameter tends to be smaller than the ocean model result and if we scale the other contributions
by a similar ratio the satellite based estimate for the lunar acceleration is (—27.3 +5.2)"cy~2.
Both values are consistent with Muller’s (1975) ‘best estimate’ of —28”cy~2 based on several
astronomical sources (§3). The good agreement between the latter and the satellite result is
better than we have the right to expect in view of their rather large error estimates. But this
agreement does indicate that we have a powerful new method of estimating the tidal accelera-
tions and improved results can be expected when long series of observations of satellites such as

TABLE 7. ESTIMATES OF SECULAR TIDAL CHANGES IN ¢ ¢ { DUE TO THE OCEAN TIDES
COMPARED WITH ASTRONOMICAL AND SATELLITE ESTIMATES

% satellite
da/dt n de/dt defdi error solution
tide 10-7(cm s™1) 1023 g2 10-19 g1 10-19 gt estimate 7[(10-28 5—2)
M, 1.29 —-1.34 —0.45 —3.46 10 —1.03
N, 0.08 -~0.08 5.82 —0.14 30 —0.07
K, — — — —0.02 30 —
L, — — ~0.10 — 30 —
2N, — — 0.21 — 30 —
K, — — — —1.38 20 —
O, 0.07 -0.07 —0.02 0.80 20 —0.07
o, — — 0.27 0.03 30 —
total 1.44 —1.49 5.73 —4.17 — —-1.17
+0.156 +0.15 +1.75 +0.47 —_— +0.25

GEOS 3 and STARLETTE become available. While the agreement between the astronomical
and oceanic estimates of 7 is such that the principal role of the oceans in dissipating the tidal
energy is established beyond any doubt, the uncertainties of both estimates are still uncomfortably
large: in particular we cannot draw any firm conclusions about the possible role of dissipation in
the solid parts of the Earth and Moon.

Eccentricity, inclination and lunar node

The present tidal variations in the eccentricity and inclination of the lunar orbit follow from
(27) and the rates are small (table 7). The former is of the order 5 x 10-195~1, very much smaller
than the value of (1.5 + 0.6) 10-165~1 deduced by Martin & Van Flandern (1970) from the lunar
observations. Tides raised on the Moon are also quite inadequate to explain this difference and
the explanation for the observed value must be sought elsewhere; it cannot be caused by tidal
dissipation as these authors suggest. If Martin & Van Flandern’s results are confirmed this
would suggest remaining long-period discrepancies in the lunar and solar theories which may
also explain the different values for 7 based on the telescope observations since the seventeenth
century, modern observations with respect to the atomic time scale, and the eclipse solutions.
The present tidal change of the inclination of the lunar orbit on the equatorial plane is insignifi-
cantly small as will be the inclination of the equator on the ecliptic (equation 67 of Kaula 1964).
Martin & Van Flandern’s analysis of the lunar motion does not indicate a significant variation
in these elements.

In most discussions of the tidal dissipation problem it is assumed that the tidal potential does
not introduce a secular rate in the lunar node due to a zero tidal torque about the line of nodes
(see for example, Jeffreys 1962; MacDonald 1964), but as stressed by Kaula (1964), this is valid
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584 K. LAMBECK

only if all phase lags €, in the potential (19) are equal. From the Lagrangian planetary equa-
tions for 2, ignoring indirect effects due to the Earth’s oblateness and solar attraction,

k R\3G. l 0Fy,,, (¢
Lonns =t —enyt sini(Z) o (2= 0m) El+m§ Fing0) G122  con 3y (42
and for constant €,,,,, the sum
l o0F
S35 (2 du) G By (i) LG )]0
e (l+m)!

vanishes. The assumption of constant phase lags is not evident, however, if the dissipation occurs
in the oceans, and the equivalent phase lags (table 6) can be expected to vary with tidal period;
in particular, long period tides may follow the equilibrium tide more closely than the semidiurnal
tides. A more reasonable assumption may be to assume that the phase lags of all tides of the same
fundamental frequency are constant. Then (42) gives

Q =2.29x 10~8cosi{— (1 +3cos2) cOS €99 +4(3 c0s2i — 1) COS €91 + (5 — 9 cOs27) COS €59},  (43)

where €5, now refers to the equivalent phase lag of the semi-diurnal tides, €5y, that of the diurnal
tides and e,, that of the zonal tides. The principal contributions to the semi-diurnal tide is M,,
to the diurnal tide O, and K, (both the lunar and solar parts) while the principal perturbation
to the long period tide comes from /mpgq = 2010 which is a secular tide when referred to an Earth
fixed reference frame and presumably has zero phase lag. However, all lag angles are small
and COS €y X COSEyy A COSEyp = 1 and 2 will be small; much smaller than the value of
(4.3 £0.4)"cy~* observed by Martin & Van Flandern (1970), and 4.4” computed by Muller,
Newhall, Van Flandern and Williams (see Muller 1976).

Owing to a combined Earth, Sun and planetary effect, the lunar node varies linearly with
time, at a rate £’ that is a function of a, ¢ and i. However, because of the tidal changes, the latter
elements will also vary with time and the lunar node will experience an acceleration according to

8=2@ i @S2,

in which the mostimportant contribution comes from the first term. According to Muller (1975)

0

0, ap .
.QN'(%(Q)CI—@;Z

(£2) 1 ~ 0.00377' cy~2 (44)
and with the observed value of 7 & — 28" cy~2, @ ~ —0.11" cy~2.

The tides will also introduce linear and quadratic rates in the argument of perigee and in the
mean anomaly of the Moon which can be estimated in the same manner as the above rates in the
ascending node, and they will be of the same magnitude. These effects will introduce small errors
in the astronomical estimates of the lunar acceleration since in the lunar orbital theory one
writes for the mean lunar longitude

A= Ao+Bt T+%(Co+ct) T2’

where the subscripts o denote observed values and the subscripts t theoretical values based on
a gravitational theory. The tidal acceleration then follows from 7 = C,. In a precise analysis one
should write, instead of B,, (B, + £ + @ + M) and for C,, (C,+ £ + & + M) where Q, &, M represent
the linear rates in the Moon’s elements due to the effect of the tides and £, &, M represent the
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TIDAL DISSIPATION IN THE OCEANS 585

quadratic indirect effects of the type (44). The present level of accuracy does not appear to
warrant this refinement.
The Earth’s secular acceleration
The tidal acceleration of the Earth follows from (254) where da/dt, de/d and di/d? follow from
(27). Both lunar and solar tides must be considered. For the latter the changes in the Earth’s
orbit are negligible but the effect of the solar torque on the spin is not, due to the 4% term entering
into the solar equivalent of equation (25). The total tidal acceleration is

Op = (Op)a+0p|e+00])  + (Or] o+ Onle+0cl), (45)

TABLE 8. ESTIMATES OF THE EARTH’S SECULAR ACCELERATION @, FROM OCEAN MODELS, ASTRO-
NOMICAL AND SATELLITE OBSERVATIONS. 0r|, 1S THE ACCELERATION DUE TO A CHANGE IN THE
LUNAR ORBIT ELEMENT K;

. 0, B total 91‘ from
tide 0,4 10-22 5-2 0, satellite solutions
M, —5.44 —0.01 —-0.49 —4.70
N, —~0.33 0.10 —0.02 (—0.25)
K, — < 0.01 < 0.01 —
2N, — < 0.01 — —
S, —~0.90 — —0.08 —1.25
T, —0.06 0.02 — (—0.04)
K, — — —-0.20 (—0.20)
O, —0.28 — 0.11 (—0.17)
Q, — < 0.01 — —
P, —-0.05 — 0.02 (—0.03)
S, (atmos) 0.08 — 0.01 0.24
total —6.98 0.11 —0.65 —6.40 + 1.50
AN v J
—17.52+0.75

where 0y|,, denotes the contribution of the total acceleration due to the secular change in the
element «;. Of the various contributions to (45) (table 8) the dominant part, some 80 %, comes
from (fy|,)( and this quantity can be estimated either from the tidal theory or deduced from the
astronomically observed 7. From the former, table 7, (fy|,)¢ = —6.05x 10-225~2 while the
astronomical data gives — 5.53 x 10-225~2, The total oceanic estimate of the f is (—7.7 +0.8)
x 10~-225~2, The satellite solution (for tides other than M, and S, the ocean models have been
used) gives (— 7.8+ 1.5) x 10~225~1 and the astronomical estimate [(6y|,) from the observed 7
in addition to ocean estimates for 6y|,, 01|; and solar tides] gives (—7.2 +0.7) x 10~225~2, With
these values, the total tidal acceleration of the Earth is given as function of the Moon’s tidal

acceleration in longitude by )
by = 53.14. (46)

The astronomical evidence for the observed acceleration of the Earth has been reviewed in
§3. The non-tidal acceleration of the Earth 6y = § — 0y is the most unsatisfactory quantity due
to it being the difference between two quantities, both of limited accuracy. If the mean of the
above three results for 6, is adopted, then Gy & 2.0 x 10-225-1. With both § and 6, precise to
about 10 9, the precision of fyy is about 50 %, of its absolute value and its significance becomes
difficult to ascertain. This value for fyy is less than that estimated by Lambeck (1975) due to
(i) Muller’s (1975, 1976) revision of the astronomical data and (ii) the present revision of the tide
data. Muller (1976) finds a further reduction in fy,; when he solves for a change in gravitational

6o Vol. 287. A.
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586 K. LAMBECK

constant in addition to the tidal accelerations. If we introduce into his solution the revised tidal
estimates, Uyy is further reduced and becomes insignificant. We are rapidly approaching the
embarrassing situation of a phenomenon for which there has never been a shortage of geophysical
explanations now appearing to be vanishing. It is reminiscent of the earlier discussion of tidal
dissipation and stresses, once again, the need for further improvements in both the observed and
theoretical accelerations. Now we cannot seek comfort in new methods such as lunar laser ranging
or satellite orbit analyses since § is the sum of the secular part and long period irregularities. Only
ancient astronomical observations can contribute and this emphasizes the need for a systematic
search for new records going further back into time than the presently available data.

Energy dissipation

The amount of tidal energy that must be dissipated in the Earth—Moon system is given by
equation (3) as a function of the lunar orbital acceleration and of the Earth’s rotational accelera-

tion. That is dE »
a? = C@evp - %m([ nd%ﬁ(,
where 6y is the total tidal acceleration of the Earth. With (46)
dE
G- 3.02 x 10%%}  ergs™
or, with the acceleration given in § 3, the astronomical estimate is
dE
= = 411 x 10®ergs,
a4 x 10¥ergs

The satellite solution gives a comparable 3.6 x 10~ erg s~ and the difference between this and
the astronomical estimate leads to an estimate of the amount of energy dissipated in the Moon.
Present results are inadequate apart from confirming that dissipation in the Moon is small.

The total rate of energy dissipation in the oceans is a comparable 4.5 x 1019 erg s, stressing
once again that a very major part of the tidal energy is dissipated in the oceans and that the solid
Earth does not possess an important energy sink. Energy dissipated in the M, tide is 3.06 x 10
ergs~! (astronomical estimate) or 3.35 x 109 erg s~ (tidal model estimate).

Limits on mantle Q

In view of the uncertainties in the two estimates of dE/d¢, the fact that the tidal estimate is
somewhat greater than the astronomical estimate is not significant, in particular since the satellite
results suggest that the tidal estimates may be too high. If we take the difference between the
upper limit, — 31 cy~?, of the astronomical estimate for 7 and the lower limit, 27.6” cy—! estimated
from the tide models, we obtain what can be considered as an estimate of the maximum specific
dissipation of the Earth. From (21),

. 0n = —%lr%q 2Klm[Flmp(Z) Gl;aq(e)]2 (l - 2p + q) sin elmpq) (47)
where the contribution of Moon tides to &7 is neglected. The three principal contributions to (47)
come from the M,, N, and O, tides and we assume that the phase lags ¢,,,,, are constant for these
three frequencies. Writing SN 6pg & 1AN €y = QL

weobtain Q1 < 901, More precise upper limits for the specific dissipation can only be established
if both the astronomical data and the tide models are improved.


http://rsta.royalsocietypublishing.org/

'\

o \
A "
AL A

=\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Y o ¥

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TIDAL DISSIPATION IN THE OCEANS 587

The mantle @ can also be estimated, in principal at least, from a comparison of the satellite and
numerical results for the coefficients Dy sineg; (or the Dy cosef;) since the former is a measure
of the total response of the Earth to the tidal potential. From the results for M, summarized in
table (6), the difference between the upper limit of the satellite solution and the lower limit of
the model solution results in an equivalent residual phase lag of 0.2°, yielding a solid Earth @ of
300 or more. For the S, solution the satellite coefficients are somewhat larger than the ocean model
coefficients and the difference could be interpreted as a measure of dissipation in the mantle.
From table 6 the result is @ ~ 250 with limits between 160 and 480. The mean of the above
three estimates for Q! leads to a lower limit for the mantle ¢ at the tidal frequencies of about 120.
An improved value for @ requires (i) better satellite results, (ii) an improved ocean model and
(iii) correct treatment of the ocean—atmosphere interaction. The advantage of this approach is
that the @ at diurnal frequencies can also be established, once more satellite orbits have been
analysed and once more reliable models for the diurnal tides become available.

Ocean dissipation mechanisms

The bottom friction and energy flux calculations by Jeffreys, Heiskanen and Miller all suggest
that the dissipation is very localized. Thus in Miller’s (1966) calculation, about 14 9%, of the
total energy is dissipated in the Bering Sea and 12 9, in the Okhotz Sea. The Timor Sea, Patagonia
shelf and Hudson Strait account for another 24 9, and ten smaller seas contribute a further 30 %,.
In the earlier studies the energy sink in the Bering Sea was even more important, 70 %, in the case
of Jeffreys’ (1920) study and 25 9, in the case of Heiskanen’s study (1921). If these estimates are
ofthe correct magnitude then the phase of the global ocean tide must be very significantly modified
by the dissipation in these shallow seas.

Dissipation in the Bering Sea has dominated all earlier discussions. However, the tidal currents
across the shelf seem to be less important than the values used by Jeffreys, Heiskanen and Miller.
Maximum tidal currents around the Pribilof and St Mathew islands on the edge of the Bering
shelf and elsewhere have an average value of less than 2km/h and the open sea currents are
likely to be less than 1 km/h. Tidal amplitudes are of the order of 20cm (National Ocean
Survey, 1975). The average depth of the shelf margin is about 60 m and its length is about
1500 km. The energy flux method (integral (34)) then gives

—dE[/dt ~ 5 x 107 erg s

This is a maximum value and includes tides other than M,. It is nearly an order of magnitude
less than the value found by Miller (1966). For o = 0.002 and a shelf area of 1.1 x 10km? the
bottom friction method (integral (332)) gives the same value for d£/d¢. It appears most unlikely
that the Bering Sea can play the dominant role that is suggested by the calculations of Jeffreys,
Heiskanen and Miller and, if from the above results we can extrapolate to other seas, Miller’s
total of 1.7 x 10 erg s~! represents very much an upper limit to the amount of energy that can be
dissipated by bottom friction in shallow seas. Admittedly his estimates are based on very few data
indeed but if the history of this calculation has shown one thing it is that the estimates decrease
with increasing information.

A hint that the bottom friction calculations may not be in order is already given by Hender-
shott (1973). The lower limit to the @ of the global ocean, as estimated by Garrett & Munk (1971),
is of the order 25. Hendershott (1972) estimates a @ of 34. But the analysis by Wunsch (1972) of

the North Atlantic tide suggests a lower limit to @ of about 5, much smaller than the global
60-2
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588 K. LAMBECK

estimate, and unexpected from Miller’s (1966) calculations which indicate that the North
Atlantic is relatively dissipationless.

If dissipation does occur in a few local areas by severe bottom friction or by some other
mechanism, the second degree terms in the tide must be significantly modified by the tides in
these areas. From the various model calculations this does not appear to be so; the agreement
between the estimates of d£/d¢ from tide models based on quite different assumptions about the
way dissipation is introduced, suggests that more global factors control the second degree
harmonics. Both Hendershott and Bogdanov & Magarik exclude some of the important shallow
seas from their solutions; Pekeris & Accad define the continent-ocean margin by the 1000 m
depth contour and assume linear friction; Zahel allows for dissipation by turbulence, yet all yield
quite similar results for dE[d¢. This is perhaps as it should be. The torques exerted on the Earth
by the Moon are described by the second degree harmonics but the energy is dissipated by com-
ponents at the other end of the wavelength spectrum. To estimate the torques we are only
interested in these second degree terms, particularly in the phase lag, and what happens to the
energy once it passes into higher modes need concern us no further. The efficacity of this breakup
into the higher harmonics is presumably dominated by global ocean characteristics since the
above calculations yield essentially the same results for d£/d¢ despite the differences in methods.
Geometry of the ocean—continent configuration, continental margins and sea floor topography
would appear to be more important than what happens to the high frequency part of the spatial
spectrum in, say, a few localized shallow seas. To evaluate the lunar acceleration of the Moon by
estimating dissipation in shallow seas, one is in fact trying to re-establish the second degree
harmonic of the tide from very localized measurements and clearly thisis a difficult and uncertain
exercise at best.

Dissipation over the coastal shelves may be more important than is generally supposed.t
Defant (1961) suggests that the average tidal currents over these shelves is of the order of 0.5 knots
or 30cms™, leading to a dissipation rate of about 50 ergs—*cm~2 The total shelf area is of the
order of 30 x 10km? resulting in a total rate of dissipation of the order of 1.5 x 10 ergs—,
nearly one half of the astronomically required value for the M, tide. Munk (1968) suggests that,
due to an interaction with internal tides, the tidal currents at the bottom of the deep oceans may
be larger than generally thought so that the deep sea may yet be an important energy sink. His
provisional estimate is 108 ergs—1. Jeffreys (1929, 1962) has suggested that dissipation along
the open coast lines may be important since ordinary waves breaking on the coast are almost
totally dissipated, there being a general absence of strong reflected waves along the shore.
Jeffreys (1968) discusses this possibility in some detail and concludes that dissipation by the
breaking of the waves is more important than by bottom friction. Applying the former mechanism
to tidal waves, he concludes that it may be an important source for the loss of tidal energy.
Jeffreys proposes a boundary condition to take into account this mechanism,

u=(g/D)4¢
between the velocity u, water depth D and tide amplitude £ at a point a suitable distance from the
shore (see also Proudman 1941). This leads to a dissipation (with equation (34b))

—<C(11—E g f f DidTdL.
¢ LJr

Such a boundary condition has not yet been applied in global tide models.
T See also Webb (1976).
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Other proposed mechanisms for tidal dissipation are not much better at quantifying the actual
rate at which energy is dissipated. Munk (1968) concludes that a significant fraction of the dissipa-
tion may take place by way of scattering into internal modes, either by the sea floor topography,
along coastlines or along the outer edge of the continental margins. Once the energy is in the
internal modes it can then be dissipated in a number of ways, for example in the shear layer above
the deep ocean floor or along surfaces of discontinuity in density. Cox & Sandstrom (1962) suggest
that a significant amount of tidal energy may be scattered into internal modes by an irregular
bottom topography and, according to Munk (1968) their theory yields an energy flux of 5 x 1018
ergs~t. Wunsch & Hendry (1972) have measured the rate of such a conversion on the continental
slope of New England and, if their value is representative of the world wide continental slopes,
the total rate of energy conversion is only 10%ergs— (Wunsch 1975). Garrett & Munk (1972)
estimated the dissipation through the breaking of internal waves and conclude that this may
amount to about 7 x 108 ergs—. According to Wunsch (1975) this value must be considered as
an upper limit. Finally, Leblond (1966) has investigated dissipation of internal waves by turbulent
friction and finds that such a mechanism may be important for the tidal waves. But as stressed
by Wunsch, the estimate of the total rate of dissipation is very dependent on the value for the
vertical eddy viscosity coefficient and the value of 102cm?s—! adopted by Leblond is higher than
usually assumed.

Whichever of these mechanisms is responsible for the dissipation of energy, there is evidence
for the oceans to be close to resonance at the semi-diurnal frequency. If the phase lags of the M,
and S, frequencies were the same then the age of the tide would be zero instead of the observed
1 day. Satellite results also indicate a different lag e and hence a different @ for these two tides.
Numerical models of the M, tide also show some sensitivity to small changes in the model and
Pekeris & Accad (1969) suspect that this tide is close to a resonance frequency. Calculations by
Longuet-Higgins & Pond (1970) and in particular by Platzman (1975) show that the oceans may
possess several free modes whose frequencies are close to semi-diurnal. Platzman also finds a free
mode with a frequency near diurnal. This suggests strongly that changes in the ocean continent
geometry can have had important consequences on the dissipation in the past. In particular if
in the past, there existed ocean geometries that result in free modes with frequencies distinctly
different from the forcing frequency, the rate of dissipation could have been significantly less
than its present value. As both the frequencies of the free modes and of the forcing function will
vary slowly with time due to the secular tidal acceleration of the Earth, even if all other factors
have remained constant, it does not appear feasible to determine if the present near-resonance
conditions have existed or not over long time intervals during the past, without solving the free
oscillation problem for each case.

Constancy of tidal dissipation

Newton (1970) suggested that the lunar acceleration may have undergone important changes
over the last 3000 years. He concluded this from his results based on satellite observations of the
tidal perturbations and on his analysis of ancient and medieval eclipse records. His satellite
results, corresponding to a present day value for the dissipation, for 7 are close to the Spencer-
Jones determination of 22”/cy? but this agreement must be considered as fortuitous rather than
real and his results (Newton 1968) must be discarded for the following reasons:

(1) Newton does not allow for the fourth degree harmonics in the ocean tide; for the satellites
used these terms are as important as the second degree harmonics.

60-3
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590 K. LAMBECK

(2) He does not allow for the frequency dependence of the tide coeflicients. This is particularly
important as the M, and O, tidal perturbations cannot be separated from his data.

(3) His treatment of the loading of the Earth by the atmospheric tide is incorrect.

(4) The dispersion of individual results for the lunar and solar tides obtained from the per-
turbations in inclination and ascending node of four satellites is far greater than can be explained
by the above effects and is indicative of further unmodelled perturbations in the orbital theory.

Newton’s values for 7 at epochs 200 B.c. and 1000 A.p. (41.6 £ 4)"/cy? and (—42.3 £ 6)"[cy?
respectively, are not significantly different. Newton’s (1972) value of (—79 + 16)”/cy? centred
at epoch 1000 A.p. is quite different but Muller (1975) argues that this value is in error due
to Newton’s use of partial eclipse records. Muller & Stephenson (1975) and Muller (1975)
find no evidence for a change in the lunar acceleration. This makes good geophysical sense since
a variation in 7 by a factor of about 2 as suggested by Newton (1970) requires a comparable
change in the coefficients D sines. Newton (1970) suggests that important dissipation may
occur by friction between the ocean and shelf ice, implying that the shelf ice controls the tidal
bulge. Whatever the merits of this mechanism, there is no evidence that significant changes have
occurred in the extent of the shelfice since sea level has not changed by more than a few metres
during the last three thousand years. Newton (1972) argues that there was a sudden change in
the properties of tides around the 7th or 8th century and suggests that an apparent change of the
Normandy coastline early in the 8th century may be evidence for such a change. In view of the
evidence that localized tidal friction may not be very important, such speculations appear
inappropriate. More recent changes in tidal phase and amplitude, over the last 2} centuries,
have been found by Cartwright (1971, 1972); about 5° cy~! in phase at the South Atlantic island
of Saint Helena and 3° cy—! in Brest for the diurnal tides and about 1 9%, cy~! in the amplitude of
the M, tide at Brest. Whether these trends are truly oceanic or symptomatic oflocal tidal changes
cannot be established with these data. The fact that (i) sea level has not varied greatly over the
last few thousand years (Fairbridge 1961; Morner 1971), that (ii) there has not been any significant
change in the sea floor topography or in the ocean—continent distribution and that (iii) dissipation
is apparently not controlled by pnenomena in a few localized regions, rules out any significant
change in the lunar tidal acceleration over this time interval.

Changes in the secular rate of the Earth’s spin can be readily accepted due to long period
variations associated with angular momentum and inertia changes of the Earth and with torques
acting on the mantle (Munk & MacDonald 1960). Muller & Stephenson (1975) and Muller
(1975) discuss the astronomical evidence for such changes that may have occurred over the
last 3000 years.

Integration back into time

It is invalid to integrate tidal equation (27) back into time because the interaction between
the Moon and Sun is ignored. This is particularly important for the changes in inclination (see
for example, Goldreich 1966). Nevertheless their integration does permit some conclusions to be
drawn about the possible consequences of tidal dissipation in the oceans. Integrating these equa-
tions back into time with constant equivalent phase lag of 5° leads to the Moon’s approach to
within 10 Earth radii from the Earth about 1.5 x 10° years ago. With 5° for semi-diurnal, 2.5° for
the diurnal and 0° for the long period tides this approach would have occurred some 1.7 x 10°
years ago. The effect of diminishing the lag of the diurnal tides on the inclination of the orbital
plane on the equator is not very important since the contributions from O, and K, tend to cancel
each other,
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TIDAL DISSIPATION IN THE OCEANS 591

Apart from changes in the ocean configuration, the equivalent phase lags of the tide K,
(and of K,) will vary with time due to their combined lunar and solar origin. The lunar part of
Dy sinesy will vary with time, but the solar part remains constant and the total K; tide will
diminish in amplitude relative to, say, O;. As these two tides contribute to d¢/d¢ with opposite
signs, the variation of the inclination with time may be modified but the sign is unlikely to change
since both the K; and O, contributions are smaller than the M, contribution. Possibly by postu-
lating certain ocean basin resonances (dé/d¢)o, may be made to dominate over (di/dt)y,, leading
to a change of sign of d¢/dt.

As most of the dissipation occurs in the ocean it is improbable that the D sin e or Dy cos e;
have remained constant during the Earth’s history. The equilibrium tide amplitude D is close
to the observed value and is determined to within 10 9%, solely by the gy, term in the ocean—
continent expansion. As the total area of the continents has remained relatively constant through-
out the geological past, Ds will not have varied by a significant amount. The phase, however,
may have varied considerably and reduction by a factor of two in the equivalent lags will push
the time of close approach to 3 x 10° years.

Without a clearer understanding of what controls the second degree phase lag of the ocean tides,
it is inopportune to speculate on the possible consequences of continental unrest on the evolution
of the Earth—-Moon system. Yet, until this is understood and possible limits on past ocean tide
parameters can be established, tidal dissipation theory will not impose any more stringent
constraints on the Moon’s origin than in does at present.

This work has been supported in part by a research grant from the Délégation Générale a la
Recherche Scientifique et Technique. Part of this work has been done while the author held
a Visiting Fellowship at the Research School of Earth Sciences at the Australian National
University. The satellite results used in this paper have been obtained by Anny Cazenave and
Sylviane Daillet. Frangoise Nourry programmed the integration of the equations of motion.
This paper constitutes contribution NS 248 of the Institut de Physique du Globe.
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